Local First Order Logic with Data: Toward Specification of Distributed Algorithms

Olivier STIETEL

Under the supervision of: Benedikt BOLLIG & Arnaud SANGNIER

Jeudi 14 décembre 2023

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

École doctorale 386 - Sciences Mathématiques de Paris Centre 1/30

Outline :

- I Motivations
- II Data Logic
- III Locality Explained
- IV The General Fragment
- V The Existential Fragment
- VI Conclusion & Outlook

Motivations - Making decisions as a group...

... of people before the computer era

Motivations - Making decisions as a group...

... of people before the computer era

... of computer nowadays

- multicore programming
- servers
- cloud
- ...

Motivations - Making decisions as a group...

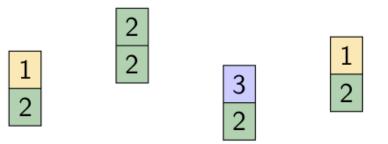
... of people before the computer era

... of computer nowadays

- multicore programming
- servers
- cloud
- ...

Motivations - Consensus problem

- Famous problem in distributed computing
- The goal is to design an algorithm such that:
 - all entities in a network have an input value
 - they should all agree on the same value
 - the chosen value should be one of the input values



Outline :

- I Motivations
- II Data Logic
- III Locality Explained
- IV The General Fragment
- V The Existential Fragment
- VI Conclusion & Outlook

Data Logic - Introduction

Context

- Data-aware systems are omnipresent
 - Database
 - Sets of data for learning
 - Distributed/ Concurrent Systems
- Need for specification languages to describe systems with data

Data Logic - Introduction

Context

- Data-aware systems are omnipresent
 - Database
 - Sets of data for learning
 - Distributed/ Concurrent Systems
- Need for specification languages to describe systems with data

Requirements

- Logic to specify input-output behavior of distributed algorithms
- Structures with two data values
- The input values can be compared with the output values

Data Logic - Structures

Data Logic - Structures

Parameters:

- Σ finite set of unary relation symbols
- $\kappa \ge 0$ an integer (the number of data values per element)

Definition

A κ -structure is a tuple $\mathfrak{A} = (A, (P_{\sigma})_{\sigma \in \Sigma}, f_1, \dots, f_{\kappa})$ where:

- A is the nonempty finite universe
- $P_{\sigma} \subseteq A$ for all $\sigma \in \Sigma$
- $f_1, \ldots, f_{\kappa} : A \to \mathbb{N}$ map each element to κ data values

Data Logic - Structures

Parameters:

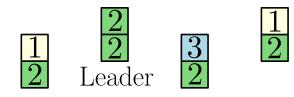
- Σ finite set of unary relation symbols
- $\kappa \ge 0$ an integer (the number of data values per element)

Definition

A κ -structure is a tuple $\mathfrak{A} = (A, (P_{\sigma})_{\sigma \in \Sigma}, f_1, \dots, f_{\kappa})$ where:

- A is the nonempty finite universe
- $P_{\sigma} \subseteq A$ for all $\sigma \in \Sigma$
- $f_1, \ldots, f_{\kappa} : A \to \mathbb{N}$ map each element to κ data values

Example (2-structure):



Data Logic - Logic

Parameters:

- Σ finite set of unary relation symbols
- $\kappa \geq 0$ an integer

Definition

The logic
$$\mathsf{FO}_{\kappa}[\Sigma]$$
 is given as follows:
 $\varphi ::= \sigma(x) \mid x_i \sim_j y \mid x = y \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists x.\varphi$
where $\sigma \in \Sigma$ and $i, j \in \{1, \dots, \kappa\}$

Example:

$$\begin{array}{c|c} a & b & b \\ \hline 1 & 2 & c & 1 \\ \hline 2 & \text{Leader} & 2 & \end{array} \begin{array}{c} d & \models a_1 \sim_1 d \\ \hline 1 & 2 & \downarrow c_1 \sim_2 c \end{array}$$

Data Logic - Logic

Parameters:

- Σ finite set of unary relation symbols
- $\kappa \ge 0$ an integer

 $\frac{c}{3}$

Definition

The logic
$$\mathsf{FO}_{\kappa}[\Sigma]$$
 is given as follows:
 $\varphi ::= \sigma(x) \mid x_i \sim_j y \mid x = y \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists x.\varphi$
where $\sigma \in \Sigma$ and $i, j \in \{1, \ldots, \kappa\}$

Example:

Leader

a

$$\models a_1 \sim_1 d$$

$$\models a_2 \sim_1 b$$

$$\not\models c_1 \sim_2 c$$

$$\models \frac{\exists^{=1} x. \mathsf{leader}(x)}{\land \forall y. \exists x. (\mathsf{leader}(x) \land x_1 \sim_2 y)}$$

Everybody takes a new name...

 $\forall x. \forall y. \neg x_2 \sim_1 y$

...different from everyone else

 $\forall x. \forall y. \neg x_2 \sim_2 y$

Everybody takes a new name...

 $\forall x. \forall y. \neg x_2 \sim_1 y$

...different from everyone else

 $\forall x. \forall y. \neg x_2 \sim_2 y$

We can force infinite models :

 $\exists x. \forall y. \neg x_1 \sim_2 y$ $\land \forall x. \exists y. x_2 \sim_1 y$ $\land \forall x. \forall y. \neg x_2 \sim_2 y$

Everybody takes a new name...

 $\forall x. \forall y. \neg x_2 \sim_1 y$

...different from everyone else

 $\forall x. \forall y. \neg x_2 \sim_2 y$

We can force infinite models :

 $\exists x. \forall y. \neg x_1 \sim_2 y$ $\land \forall x. \exists y. x_2 \sim_1 y$ $\land \forall x. \forall y. \neg x_2 \sim_2 y$

Everybody takes a new name...

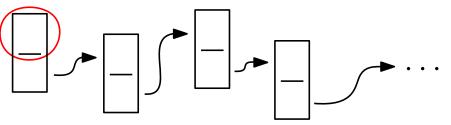
 $\forall x.\forall y.\neg x_2 \sim_1 y$

...different from everyone else

 $\forall x. \forall y. \neg x_2 \sim_2 y$

We can force infinite models :

 $\exists x. \forall y. \neg x_1 \sim_2 y$ $\land \forall x. \exists y. x_2 \sim_1 y$ $\land \forall x. \forall y. \neg x_2 \sim_2 y$ unique



Everybody takes a new name...

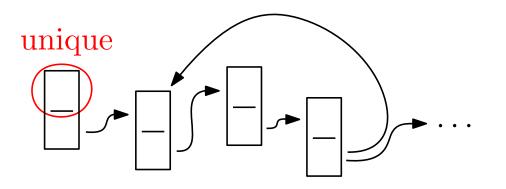
 $\forall x. \forall y. \neg x_2 \sim_1 y$

...different from everyone else

 $\forall x. \forall y. \neg x_2 \sim_2 y$

We can force infinite models :

 $\exists x. \forall y. \neg x_1 \sim_2 y$ $\land \forall x. \exists y. x_2 \sim_1 y$ $\land \forall x. \forall y. \neg x_2 \sim_2 y$



Everybody takes a new name...

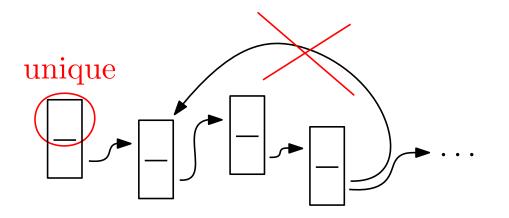
 $\forall x. \forall y. \neg x_2 \sim_1 y$

...different from everyone else

 $\forall x. \forall y. \neg x_2 \sim_2 y$

We can force infinite models :

 $\exists x. \forall y. \neg x_1 \sim_2 y$ $\land \forall x. \exists y. x_2 \sim_1 y$ $\land \forall x. \forall y. \neg x_2 \sim_2 y$



Everybody takes a new name...

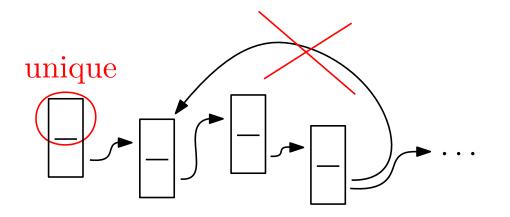
 $\forall x. \forall y. \neg x_2 \sim_1 y$

...different from everyone else

 $\forall x. \forall y. \neg x_2 \sim_2 y$

We can force infinite models :

 $\exists x. \forall y. \neg x_1 \sim_2 y$ $\land \forall x. \exists y. x_2 \sim_1 y$ $\land \forall x. \forall y. \neg x_2 \sim_2 y$



With only one data value per element,

 $\mathsf{FO}_1[\Sigma]$ \longrightarrow FO over one equivalence relation

Data Logic - Satisfiability Problem

Question: How to know that a given specification is consistent ?

Data Logic - Satisfiability Problem

Question: How to know that a given specification is consistent ?

Definition

The problem $SAT(\mathcal{F})$ is defined as follows: **Input:** Finite set Σ ; sentence $\varphi \in \mathcal{F}[\Sigma]$. **Question:** Is there a data structure \mathfrak{A} such that $\mathfrak{A} \models \varphi$?

Data Logic - Satisfiability Problem

Question: How to know that a given specification is consistent ?

Definition

The problem $SAT(\mathcal{F})$ is defined as follows: **Input:** Finite set Σ ; sentence $\varphi \in \mathcal{F}[\Sigma]$. **Question:** Is there a data structure \mathfrak{A} such that $\mathfrak{A} \models \varphi$?

Theorem

SAT(FO₂) is undecidable, even when $\Sigma = \emptyset$ and without using $_1 \sim_2$ and $_2 \sim_1$.

Other related works:

• Works where the number of variables is bounded

[Kieronski and Tendera, 2009]

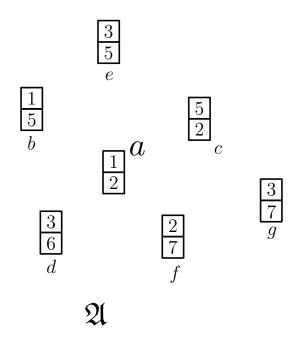
• Two-variable logic on data words [Bojanczyk, David, Muscholl, Schwentick, and Segoufin, 2011]

Olivier Stietel \cdot Local First Order Logic with Data

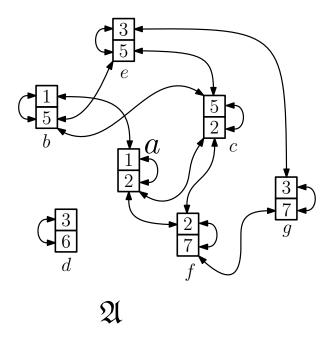
10/30

Outline :

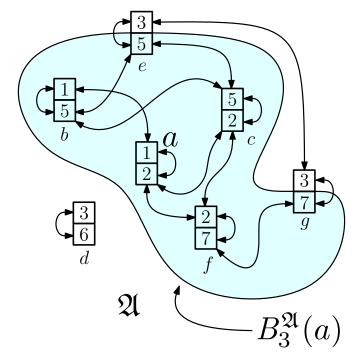
- I Motivations
- II Data Logic
- III Locality Explained
- IV The General Fragment
- V The Existential Fragment
- VI Conclusion & Outlook



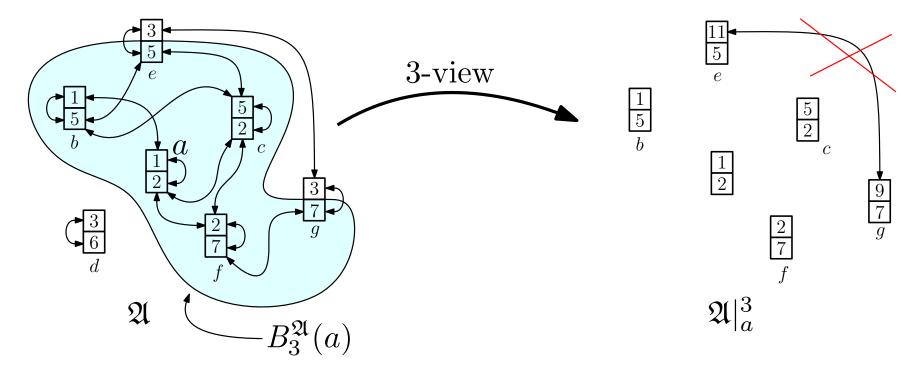
• \mathfrak{A} — 2-data structure



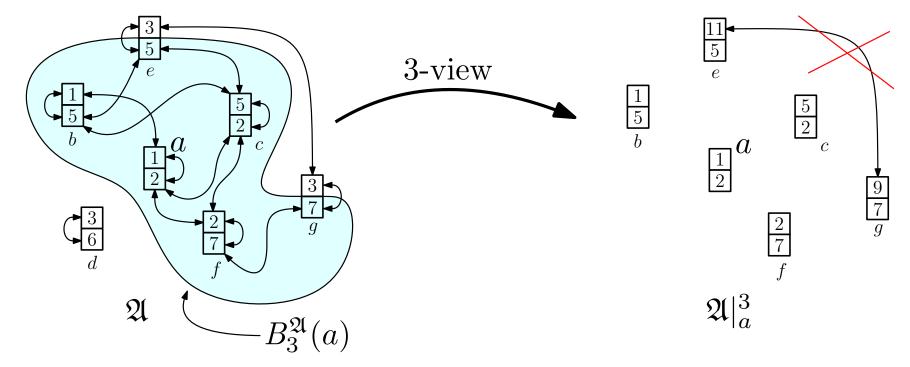
- \mathfrak{A} 2-data structure
- $\mathcal{G}(\mathfrak{A})$ data graph



- \mathfrak{A} 2-data structure
- $\mathcal{G}(\mathfrak{A})$ data graph
- $B_3^{\mathfrak{A}}(a) 3$ -ball



- \mathfrak{A} 2-data structure
- $\mathcal{G}(\mathfrak{A})$ data graph
- $B_3^{\mathfrak{A}}(a)$ 3-ball
- $\mathfrak{A}|_a^3$ 3-view of a



- \mathfrak{A} 2-data structure
- $\mathcal{G}(\mathfrak{A})$ data graph
- $B_3^{\mathfrak{A}}(a)$ 3-ball
- $\mathfrak{A}|_a^3$ 3-view of a
- Local modality $\langle\!\langle \psi \rangle\!\rangle_x^3$ with $\psi \in \mathsf{FO}_{\kappa}[\Sigma]$

 $\longrightarrow \psi$ has only access to $\mathfrak{A}|_a^3$

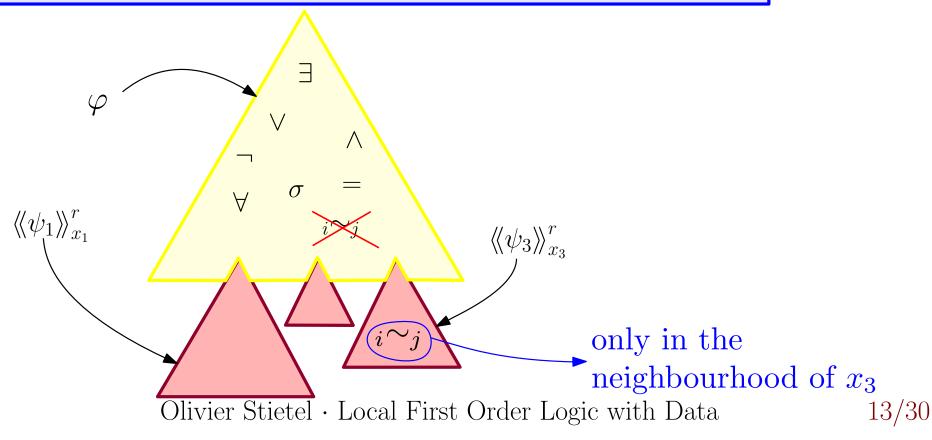
Locality Explained - Local Fragment

Parameters :

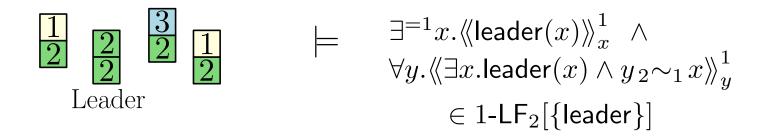
- Σ finite set of unary relation symbols
- $\kappa > 0$ an integer
- $r \ge 0$ an integer

Definition

The logic r-LF $_{\kappa}[\Sigma]$ is given as follows: $\varphi ::= \langle\!\langle \psi \rangle\!\rangle_x^r \mid x = y \mid \exists x.\varphi \mid \varphi \lor \varphi \mid \neg \varphi$ where $\psi \in \mathsf{FO}_{\kappa}[\Sigma]$.



Locality Explained - Consensus & Inclusions



Inclusion analysis:

 $1-\mathsf{LF}_{\kappa}[\Sigma] \subseteq 2-\mathsf{LF}_{\kappa}[\Sigma] \subseteq 3-\mathsf{LF}_{\kappa}[\Sigma] \subseteq \cdots \subseteq \mathsf{FO}_{\kappa}[\Sigma]$

Olivier Stietel · Local First Order Logic with Data

14/30

Outline :

- I Motivations
- II Data Logic
- III Locality Explained
- **IV The General Fragment** (Corresponds to [FSTTCS21])
 - V The Existential Fragment
 - VI Conclusion & Outlook

The General Fragment - Positive Results

Theorem

SAT(1-LF₂) is decidable. (with relations in $_1\sim_1, _2\sim_2, _1\sim_2$)

The General Fragment - Positive Results

Theorem

SAT(1-LF₂) is decidable. (with relations in $_1\sim_1, _2\sim_2, _1\sim_2$)

— Wait, $_1 \sim_2$ but not $_2 \sim_1$?

The General Fragment - Positive Results

Theorem

SAT(1-LF₂) is decidable. (with relations in $_1 \sim_1, _2 \sim_2, _1 \sim_2$)

- Wait, $_1 \sim_2$ but not $_2 \sim_1$?

Features of the proof:

• reduction to two-variable FO over two equivalence relations

The General Fragment - Positive Results

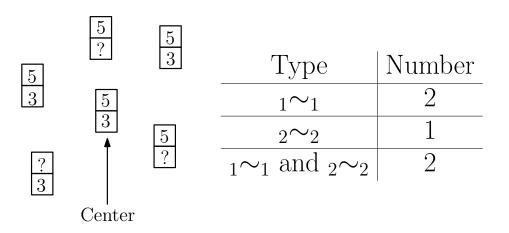
Wait, $_1 \sim_2$ but not $_2 \sim_1$?

Theorem

SAT(1-LF₂) is decidable. (with relations in $_1 \sim_1, _2 \sim_2, _1 \sim_2$)

Features of the proof:

- reduction to two-variable FO over two equivalence relations
- a view \approx counting



The General Fragment - Positive Results

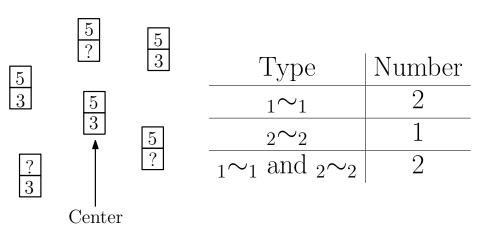
Wait, $_1 \sim_2$ but not $_2 \sim_1$?

Theorem

SAT(1-LF₂) is decidable. (with relations in $_1 \sim_1, _2 \sim_2, _1 \sim_2$)

Features of the proof:

- reduction to two-variable FO over two equivalence relations
- a view \approx counting



- reduce two-variable FO with counting to two-variable FO without it
 - two-variable FO with counting is decidable
 - but it involves to duplicates binary relations and this does not work with equivalence

The General Fragment - Negative Results

Theorem

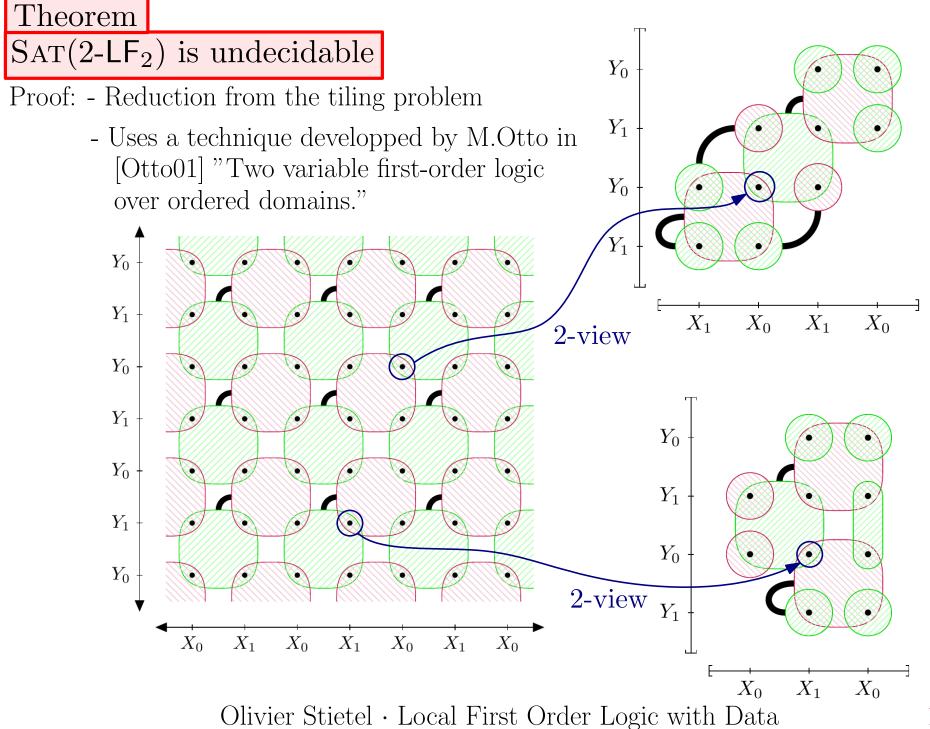
 $SAT(2-LF_2)$ is undecidable

Proof: - Reduction from the tiling problem

- Uses a technique developped by M.Otto in [Otto01] "Two variable first-order logic over ordered domains."



The General Fragment - Negative Results



17/30

The General Fragment - Conclusions

Summary:

- $SAT(1-LF_2)$ is decidable (with restriction)
- $SAT(2-LF_2)$ is undecidable

Decidability of full $SAT(1-LF_2)$ is an open problem.

From this, what are other decidable fragments?

Outline :

- I Motivations
- II Data Logic
- III Locality Explained
- IV The General Fragment
- V The Existential Fragment (Corresponds to [GandALF22])
- VI Conclusion & Outlook

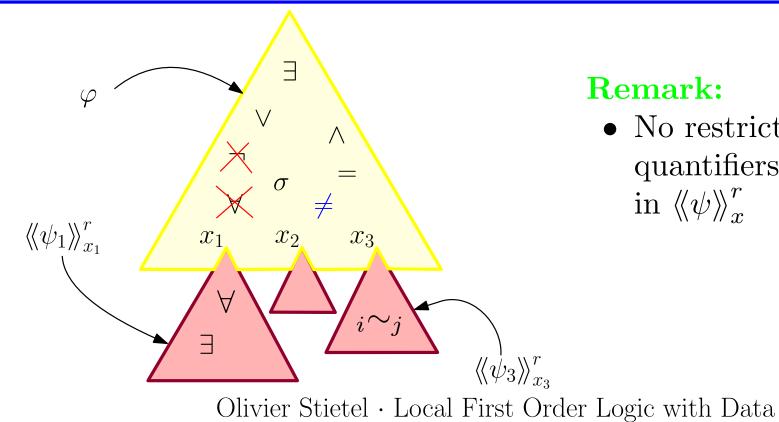
The Existential Fragment - Definition

Parameters:

- Σ finite set of unary relation symbols
- $\kappa > 0$ an integer
- $r \ge 0$ an integer

Definition

The logic $\exists -r - \mathsf{LF}_{\kappa}[\Sigma]$ is given as follows: $\varphi ::= \langle\!\langle \psi \rangle\!\rangle_x^r \mid x = y \mid x \neq y \mid \exists x.\varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi$ where $\psi \in \mathsf{FO}_D[\Sigma]$.



Remark:

• No restriction on the quantifiers in ψ located in $\langle\!\langle \psi \rangle\!\rangle_r^r$

20/30

The Existential Fragment - Positive Results (1)

SAT(\exists -2-LF₂) is N2EXP-complete.

Proof. Reduction to $SAT(FO_1)$:

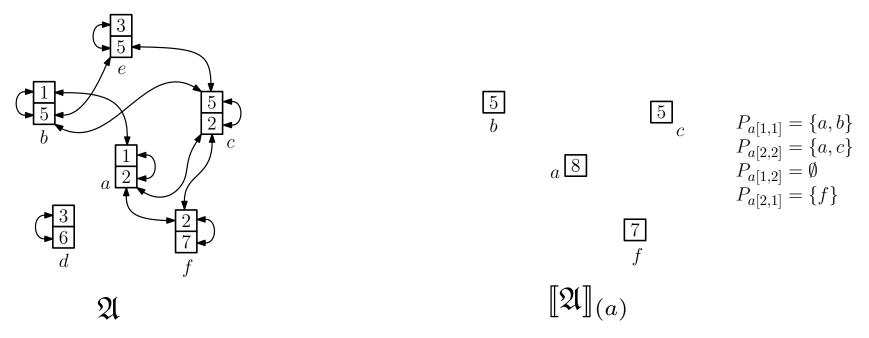
• Take a formula in prenex normal form

 $\exists x_1 \dots \exists x_n . \phi_{qf}(x_1, \dots, x_n)$

- Take *n* elements a_1, \ldots, a_n of the structure
- Encode the relation with the data of a_i 's by unary predicates
- Keep only the data in the views of a_i 's not in relation with a_i 's (at most 1 per element because we have 2-views)
- Ensure 1-data structures are well-formed

The Existential Fragment - Positive Results (2)

From 2-data structure to 1-data structure



- Each element in $B_2^{\mathfrak{A}}(a)$ shares at least one data with a
- $P_{a[i,j]}$: the element has its *j*-th data equals to the *i*-th data of a

Olivier Stietel \cdot Local First Order Logic with Data

22/30

The Existential Fragment - Positive Results (3) Translating the formula $\phi_{qf}(x_1, \dots, x_n)$

- We want to translate $\phi_{qf}(x_1, \dots, x_n)$ into $[\![\phi_{qf}]\!](x_1, \dots, x_n)$ of $\mathsf{FO}_1[\Sigma']$
- Main issue: formulas of the form $y_j \sim_k z$

The Existential Fragment - Positive Results (3) Translating the formula $\phi_{qf}(x_1, \dots, x_n)$

- We want to translate $\phi_{qf}(x_1, \dots, x_n)$ into $[\![\phi_{qf}]\!](x_1, \dots, x_n)$ of $\mathsf{FO}_1[\Sigma']$
- Main issue: formulas of the form $y_j \sim_k z$

Trick to solve this case when located in the subformula $\langle\!\langle\psi
angle^2_x$:

- 1. the *j*-th data of *y* is **in the radius** 1 **ball** around *x*: \rightarrow *y* have to be labeled with $P_{a[i,j]}$ and *z* with $P_{a[i,k]}$ for $i \in \{1,2\}$
- 2. the *j*-th data of *y* is **in the radius** 2 **ball** but **not in the radius** 1 **ball** around *x*:

 \rightarrow y and z have the same data in the translated data structure

3. the *j*-th data of y is **not in the radius** 2 **ball** around x:

 $\rightarrow y_j \sim_k z$ cannot hold in $\langle\!\langle \psi \rangle\!\rangle_x^2$

The Existential Fragment - Positive Results (3) Translating the formula $\phi_{qf}(x_1, \dots, x_n)$

- We want to translate $\phi_{qf}(x_1, \dots, x_n)$ into $[\![\phi_{qf}]\!](x_1, \dots, x_n)$ of $\mathsf{FO}_1[\Sigma']$
- Main issue: formulas of the form $y_j \sim_k z$

Trick to solve this case when located in the subformula $\langle\!\langle\psi
angle^2_x$:

- 1. the *j*-th data of *y* is **in the radius** 1 **ball** around *x*: \rightarrow *y* have to be labeled with $P_{a[i,j]}$ and *z* with $P_{a[i,k]}$ for $i \in \{1,2\}$
- 2. the *j*-th data of *y* is **in the radius** 2 **ball** but **not in the radius** 1 **ball** around *x*:
 - \rightarrow y and z have the same data in the translated data structure
- 3. the *j*-th data of *y* is **not in the radius 2 ball** around *x*: $\rightarrow y_i \sim_k z$ cannot hold in $\langle\!\langle \psi \rangle\!\rangle_r^2$
- We finally obtain: $\mathfrak{A} \models \phi_{qf}(a_1, \dots, a_n)$ iff $[\mathfrak{A}]_{(a_1, \dots, a_n)} \models [\phi_{qf}](a_1, \dots, a_n)$

- \bullet To finish, we need to find a 1-data structure ${\mathfrak B}$ such that
- 1. \mathfrak{B} has *n* elements a_1, \ldots, a_n
- 2. $\mathfrak{B} \models \llbracket \phi_{qf} \rrbracket (a_1, \ldots, a_n)$
- 3. $\mathfrak{B} = \llbracket \mathfrak{A} \rrbracket_{(a_1,\ldots,a_n)}$ for some 2-data structure \mathfrak{A} .

- \bullet To finish, we need to find a 1-data structure $\mathfrak B$ such that
- 1. \mathfrak{B} has *n* elements a_1, \ldots, a_n
- 2. $\mathfrak{B} \models \llbracket \phi_{qf} \rrbracket (a_1, \ldots, a_n)$
- 3. $\mathfrak{B} = \llbracket \mathfrak{A} \rrbracket_{(a_1,\ldots,a_n)}$ for some 2-data structure \mathfrak{A} .
- For this last point, we ensure with formulas in $\mathsf{FO}_1[\Sigma']$ that - the labeling by $P_{a_k[i,j]}$ is consistent
 - if a node is is not labelled by any $P_{a_k[i,j]}$, its value is unique
 - the same holds for nodes labelled by $P_{a_k[i,1]}$ and $P_{a_\ell[j,2]}$

- \bullet To finish, we need to find a 1-data structure ${\mathfrak B}$ such that
- 1. \mathfrak{B} has *n* elements a_1, \ldots, a_n
- 2. $\mathfrak{B} \models \llbracket \phi_{qf} \rrbracket (a_1, \dots, a_n)$
- 3. $\mathfrak{B} = \llbracket \mathfrak{A} \rrbracket_{(a_1,\ldots,a_n)}$ for some 2-data structure \mathfrak{A} .
- For this last point, we ensure with formulas in $\mathsf{FO}_1[\Sigma']$ that - the labeling by $P_{a_k[i,j]}$ is consistent
 - if a node is is not labelled by any $P_{a_k[i,j]}$, its value is unique
 - the same holds for nodes labelled by $P_{a_k[i,1]}$ and $P_{a_\ell[j,2]}$
- This gives rise to a formula $\phi_{wf}(x_1, \ldots, x_n)$

- \bullet To finish, we need to find a 1-data structure ${\mathfrak B}$ such that
- 1. \mathfrak{B} has *n* elements a_1, \ldots, a_n
- 2. $\mathfrak{B} \models \llbracket \phi_{qf} \rrbracket (a_1, \dots, a_n)$
- 3. $\mathfrak{B} = \llbracket \mathfrak{A} \rrbracket_{(a_1,\ldots,a_n)}$ for some 2-data structure \mathfrak{A} .
- For this last point, we ensure with formulas in $\mathsf{FO}_1[\Sigma']$ that – the labeling by $P_{a_k[i,j]}$ is consistent
 - if a node is is not labelled by any $P_{a_k[i,j]}$, its value is unique
 - the same holds for nodes labelled by $P_{a_k[i,1]}$ and $P_{a_\ell[j,2]}$
- This gives rise to a formula $\phi_{wf}(x_1, \ldots, x_n)$
- Finally, $\exists x_1, \ldots, \exists x_n, \phi_{qf}(x_1, \ldots, x_n)$ is satisfiable iff $\exists x_1, \ldots, \exists x_n, \llbracket \phi_{qf} \rrbracket (x_1, \ldots, x_n) \land \phi_{wf}(x_1, \ldots, x_n)$ is satisfiable.

The Existential Fragment - Positive Results (5) Other result

Theorem

For all $\kappa \geq 1$, SAT(\exists -1-LF_{κ}) is NEXP-complete.

Proof. Reduction to $SAT(FO_0)$:

- Take a formula in prenex normal form $\exists x_1 \dots \exists x_n . \phi_{qf}(x_1, \dots, x_n)$
- Take *n* elements a_1, \ldots, a_n of the structures
- Encode the relation with the data of a_i 's by unary predicates
- Keep only the data in the views of a_i 's not in relation with a_i 's (at most 1 per element because we have 2-neighborhoods)
- Ensure 0-data structures are well-formed

The Existential Fragment - Negative Results Radius 3 and two data values

Theorem

SAT(\exists -3-LF₂) is undecidable.

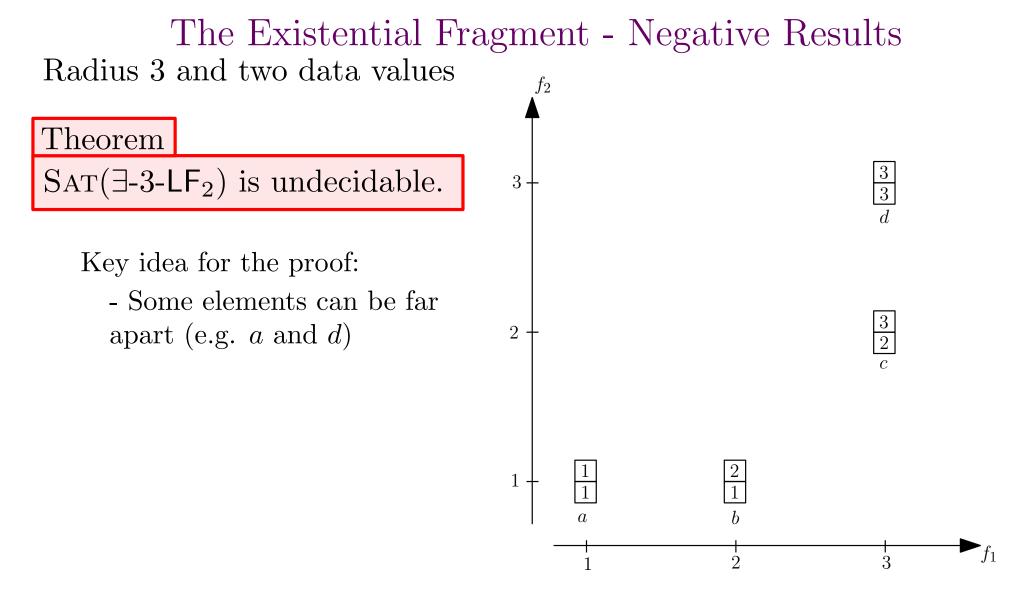
The Existential Fragment - Negative Results Radius 3 and two data values

Theorem

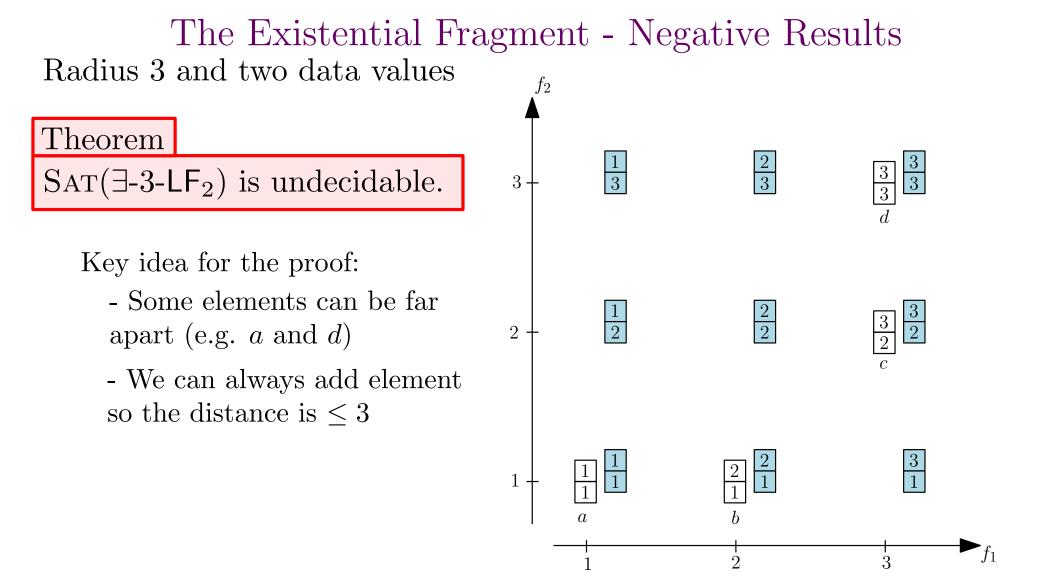
SAT(\exists -3-LF₂) is undecidable.

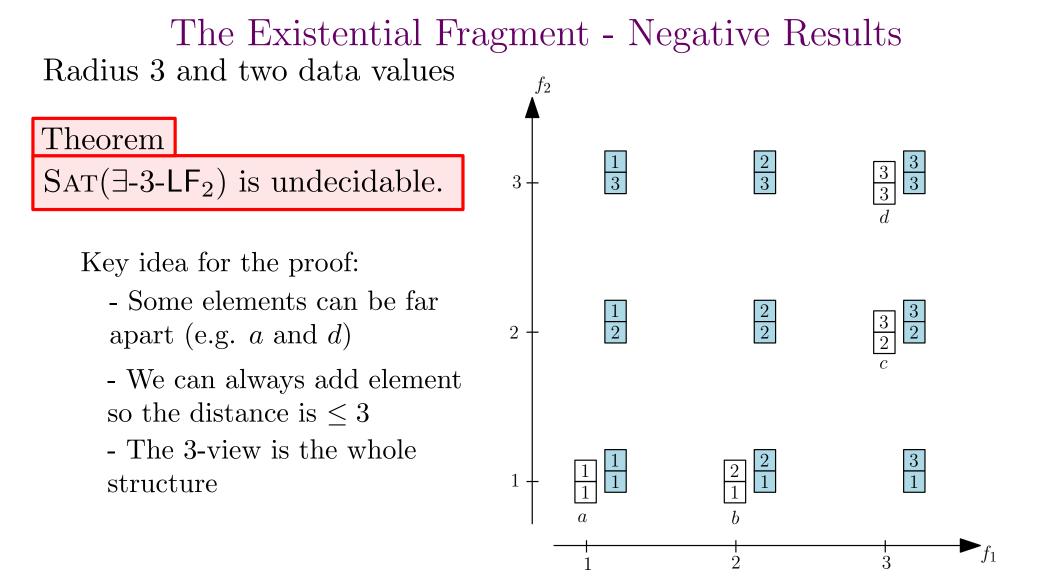
Key idea for the proof:Some elements can be far apart (e.g. a and d)

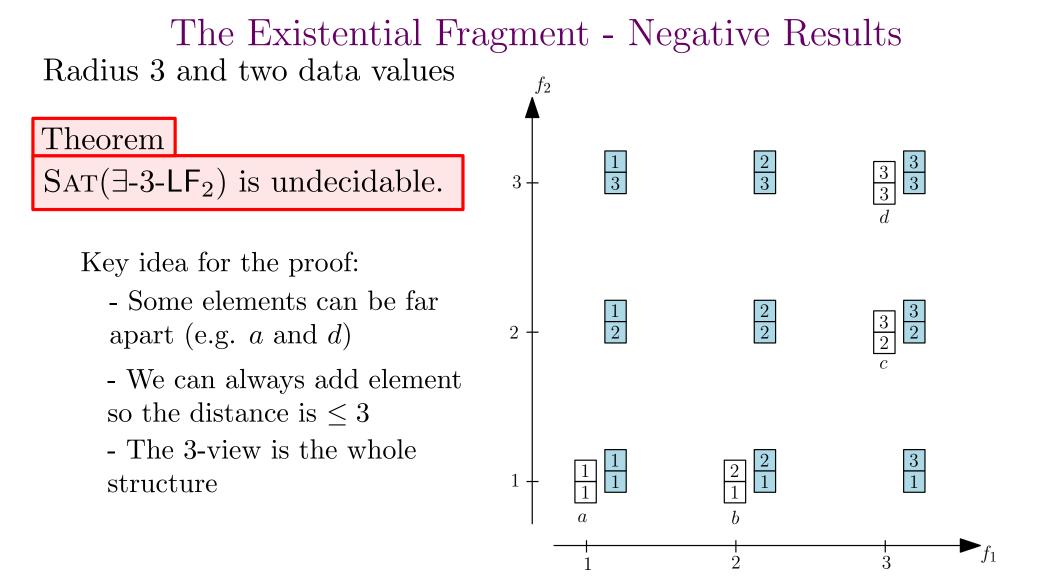
 $\frac{1}{1}$



26/30





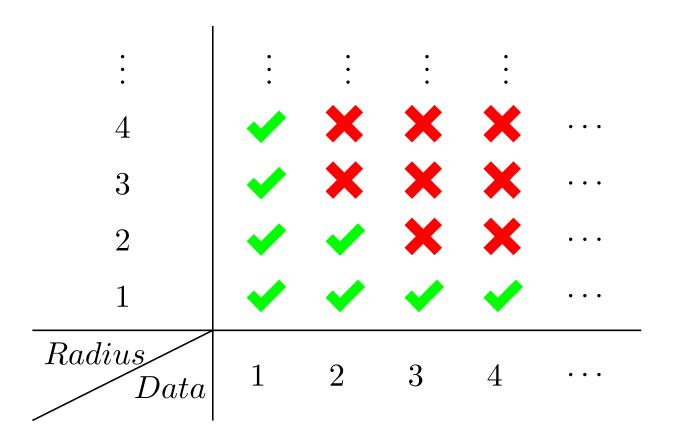


Radius 2 and three data values

Theorem

SAT(\exists -2-LF₃) is undecidable.

The Existential Fragment - Conclusion



Outline :

- I Motivations
- II Data Logic
- III Locality Explained
- IV The General Fragment
- V The Existential Fragment
- VI Conclusion & Outlook

Conclusion & Outlook

On this work:

- Resolve the case of $Sat(1-LF_2)$ without restriction
- Try to apply this work for verification
- Study effective decidability and approximation methods

Broadly:

- Many theoretical results claim that (almost) nothing is possible in distributed computing, while in practice, it's ubiquitous in our everyday life.
 - \rightarrow try to decrease the size of this gap
 - \rightarrow find better paradigms

Recap

Logic	r	κ	Relations	Decidability status
FO _κ		0	Ø	NEXP-complete
		1	$\{1 \sim 1\}$	N2EXP-complete
		2	$\{_1 \sim_1, _2 \sim_2\}$	Undecidable
r -LF $_{\kappa}$	1	2	$\{1 \sim_1, 2 \sim_2, 1 \sim_2\}$	Decidable
	1	2	$\{1\sim_1, 2\sim_2, 2\sim_1\}$	Decidable
	2	2	$\{1 \sim_1, 2 \sim_2, 1 \sim_2\}$	Undecidable
	3	2	$\{1 \sim_1, 2 \sim_2\}$	Undecidable
$\exists -r - LF_{\kappa}$	1	≥ 1	$\{_1 \sim_1\}$	NEXP-complete
	2	2	$\{1 \sim 1, 2 \sim 2, 1 \sim 2, 2 \sim 1\}$	N2EXP-complete
	3	2	$\{1 \sim 1, 2 \sim 2, 1 \sim 2, 2 \sim 1\}$	Undecidable
	2	3	All_3	Undecidable