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Motivations - Making decisions as a group...

...of people before the computer era

...of computer nowadays

• multicore programming
• servers
• cloud
• ...

Verification coming in
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Motivations - Consensus problem

• Famous problem in distributed computing
• The goal is to design an algorithm such that:

– all entities in a network have an input value
– they should all agree on the same value
– the chosen value should be one of the input values
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Data Logic - Introduction

Context
• Data-aware systems are omnipresent

– Database
– Sets of data for learning
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Data Logic - Introduction

Context
• Data-aware systems are omnipresent

– Database
– Sets of data for learning
– Distributed/ Concurrent Systems

• Need for specification languages to describe systems with data

Requirements
• Logic to specify input-output behavior of distributed algorithms
• Structures with two data values
• The input values can be compared with the output values
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Data Logic - Structures

A data value Element of a countable set (here N)
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Data Logic - Structures

Parameters:
• Σ finite set of unary relation symbols
• κ ≥ 0 an integer (the number of data values per element)

A κ-structure is a tuple A = (A, (Pσ)σ∈Σ, f1, . . . , fκ) where:
• A is the nonempty finite universe
• Pσ ⊆ A for all σ ∈ Σ
• f1, . . . , fκ : A→ N map each element to κ data values

A data value Element of a countable set (here N)

Definition
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Data Logic - Structures

Parameters:
• Σ finite set of unary relation symbols
• κ ≥ 0 an integer (the number of data values per element)

A κ-structure is a tuple A = (A, (Pσ)σ∈Σ, f1, . . . , fκ) where:
• A is the nonempty finite universe
• Pσ ⊆ A for all σ ∈ Σ
• f1, . . . , fκ : A→ N map each element to κ data values

Example (2-structure):

Leader
1
2

2
2

2
3 2

1

A data value Element of a countable set (here N)

Definition
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Data Logic - Logic

Parameters:
• Σ finite set of unary relation symbols
• κ ≥ 0 an integer

The logic FOκ[Σ] is given as follows:
ϕ ::= σ(x) | x i∼j y | x = y | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ

where σ ∈ Σ and i, j ∈ {1, . . . , κ}

Example:
|= a1∼1 d

|= a2∼1 b

6|= c1∼2 cLeader
1
2

2
2

2
3 2

1a
b

c
d

Definition
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Data Logic - Logic

Parameters:
• Σ finite set of unary relation symbols
• κ ≥ 0 an integer

The logic FOκ[Σ] is given as follows:
ϕ ::= σ(x) | x i∼j y | x = y | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ

where σ ∈ Σ and i, j ∈ {1, . . . , κ}

∃=1x.leader(x)
∧∀y.∃x.(leader(x) ∧ x1∼2 y)

|=

Example:
|= a1∼1 d

|= a2∼1 b

6|= c1∼2 cLeader
1
2

2
2

2
3 2

1a
b

c
d

Definition
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Data Logic - Examples

Everybody takes a new name...

∀x.∀y.¬x2∼1 y

∀x.∀y.¬x2∼2 y

...different from everyone else
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Data Logic - Examples

We can force infinite models :

Everybody takes a new name...

∀x.∀y.¬x2∼1 y

∀x.∀y.¬x2∼2 y

...different from everyone else

∃x.∀y.¬x1∼2 y
∧∀x.∃y.x2∼1 y
∧∀x.∀y.¬x2∼2 y

FO over one equivalence relation

With only one data value per element,

FO1[Σ]

unique

· · ·
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Data Logic - Satisfiability Problem

Question: How to know that a given
specification is consistent ?
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Question: Is there a data structure A such that A |= ϕ ?
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Data Logic - Satisfiability Problem

Question: How to know that a given
specification is consistent ?

The problem Sat(F) is defined as follows:
Input: Finite set Σ; sentence ϕ ∈ F [Σ].
Question: Is there a data structure A such that A |= ϕ ?

Sat(FO2) is undecidable, even when Σ = ∅ and without using 1∼2

and 2∼1.

Other related works:
• Works where the number of variables is bounded

[Kieronski and Tendera, 2009]
• Two-variable logic on data words

[Bojanczyk, David, Muscholl, Schwentick, and Segoufin, 2011]

Definition

Theorem
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Locality Explained - From Structures to Views

• A — 2-data structure

ab

d f

c

e

A

3
6

g

3
5

5
1

1
2

5
2

2
7

3
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d f
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• BA
3 (a) — 3-ball
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Locality Explained - From Structures to Views

• A — 2-data structure

ab

d f

c

e

BA
3 (a)

1
2

2
7

b

f

c

A A|3a

• G(A) — data graph

• BA
3 (a) — 3-ball

• A|3a — 3-view of a

3
6

3-view

5
1

5
2

g

3
5

5
1

1
2

5
2

2
7

3
7

11
5

9
7
g
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Locality Explained - From Structures to Views

• A — 2-data structure

ab

d f

c

e

BA
3 (a)

1
2

2
7

b

f

c

A A|3a

• G(A) — data graph

• BA
3 (a) — 3-ball

• A|3a — 3-view of a

• Local modality 〈〈ψ〉〉3x with ψ ∈ FOκ[Σ]

3
6

3-view

5
1

5
2

g

3
5

5
1

1
2

5
2

2
7

3
7

11
5

9
7

ψ has only access to A|3a

g

e

a
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Locality Explained - Local Fragment
Parameters :
• Σ finite set of unary relation symbols
• κ > 0 an integer
• r ≥ 0 an integer

The logic r-LFκ[Σ] is given as follows:
ϕ ::= 〈〈ψ〉〉rx | x = y | ∃x.ϕ | ϕ ∨ ϕ | ¬ϕ

where ψ ∈ FOκ[Σ].

∃

∀
=

∨ ∧¬
σ

i∼j

ϕ

〈〈ψ1〉〉rx1 〈〈ψ3〉〉rx3

i∼j

only in the
neighbourhood of x3

Definition
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Locality Explained - Consensus & Inclusions

Inclusion analysis:

1-LFκ[Σ] ⊆ 2-LFκ[Σ] ⊆ 3-LFκ[Σ] ⊆ · · · ⊆ FOκ[Σ]

∃=1x.〈〈leader(x)〉〉1x ∧
∀y.〈〈∃x.leader(x) ∧ y 2∼1x〉〉1y

|=

Leader

1
2

2
2 2

3

2
1

∈ 1-LF2[{leader}]
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The General Fragment - Positive Results

Sat(1-LF2) is decidable.
(with relations in 1∼1, 2∼2, 1∼2)

Theorem
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The General Fragment - Positive Results

Wait, 1∼2 but not 2∼1?
Features of the proof:
• reduction to two-variable FO

over two equivalence relations

• a view ≈ counting
5
3

?
3

3
5

5
?

5
3

5
?

Center

Type Number

1∼1 2

2∼2 1

1∼1 and 2∼2 2

Sat(1-LF2) is decidable.
(with relations in 1∼1, 2∼2, 1∼2)

Theorem
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The General Fragment - Positive Results

Wait, 1∼2 but not 2∼1?
Features of the proof:
• reduction to two-variable FO

over two equivalence relations

• a view ≈ counting

• reduce two-variable FO with counting
to two-variable FO without it

5
3

?
3

3
5

5
?

5
3

5
?

Center

Type Number

1∼1 2

2∼2 1

1∼1 and 2∼2 2

- two-variable FO with counting is decidable
- but it involves to duplicates binary relations

and this does not work with equivalence

Sat(1-LF2) is decidable.
(with relations in 1∼1, 2∼2, 1∼2)

Theorem
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The General Fragment - Negative Results

Sat(2-LF2) is undecidable

[Otto01] ”Two variable first-order logic
over ordered domains.”

Proof: - Reduction from the tiling problem

- Uses a technique developped by M.Otto in

Theorem
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The General Fragment - Negative Results

2-view

2-view

Sat(2-LF2) is undecidable

[Otto01] ”Two variable first-order logic
over ordered domains.”

Proof: - Reduction from the tiling problem

- Uses a technique developped by M.Otto in

Theorem
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The General Fragment - Conclusions

Summary:
• Sat(1-LF2) is decidable (with restriction)
• Sat(2-LF2) is undecidable

Decidability of full Sat(1-LF2) is an open problem.

From this, what are other decidable fragments?
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The Existential Fragment - Definition
Parameters:
• Σ finite set of unary relation symbols
• κ > 0 an integer
• r ≥ 0 an integer

The logic ∃-r-LFκ[Σ] is given as follows:
ϕ ::= 〈〈ψ〉〉rx | x = y | x 6= y | ∃x.ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where ψ ∈ FOD[Σ].

Remark:
• No restriction on the

quantifiers in ψ located
in 〈〈ψ〉〉rx

∃

∀
=

∨ ∧
¬

σ

i∼j

x1 x2 x3

ϕ

〈〈ψ1〉〉rx1

〈〈ψ3〉〉rx3

∀

6=

∃

Definition
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The Existential Fragment - Positive Results (1)

Sat(∃-2-LF2) is N2EXP-complete.

Proof. Reduction to Sat(FO1):
• Take a formula in prenex normal form

∃x1. . . .∃xn.φqf (x1, . . . , xn)

• Take n elements a1, . . . , an of the structure
• Encode the relation with the data of ai’s by unary predicates
• Keep only the data in the views of ai’s not in relation with ai’s

(at most 1 per element because we have 2-views)
• Ensure 1-data structures are well-formed
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The Existential Fragment - Positive Results (2)

From 2-data structure to 1-data structure

• Each element in BA
2 (a) shares at least one data with a

• Pa[i,j] : the element has its j-th data equals to the i-th data of a

1
2

2
7

a

b

d f

c

e

A

3
5

5
1

5
2

3
6

a

b

f

c

[[A]](a)

5

8

7

5
Pa[1,1] = {a, b}
Pa[2,2] = {a, c}
Pa[1,2] = ∅
Pa[2,1] = {f}
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The Existential Fragment - Positive Results (3)
Translating the formula φqf (x1, . . . , xn)

• We want to translate φqf (x1, . . . , xn) into [[φqf ]](x1, . . . , xn) of
FO1[Σ′]

• Main issue: formulas of the form y j∼k z
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2. the j-th data of y is in the radius 2 ball but not in the
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The Existential Fragment - Positive Results (3)
Translating the formula φqf (x1, . . . , xn)

• We want to translate φqf (x1, . . . , xn) into [[φqf ]](x1, . . . , xn) of
FO1[Σ′]

• Main issue: formulas of the form y j∼k z

Trick to solve this case when located in the subformula 〈〈ψ〉〉2x:
1. the j-th data of y is in the radius 1 ball around x:
→ y have to be labeled with Pa[i,j] and z with Pa[i,k] for i ∈ {1, 2}

2. the j-th data of y is in the radius 2 ball but not in the
radius 1 ball around x:
→ y and z have the same data in the translated data structure

3. the j-th data of y is not in the radius 2 ball around x:
→ y j∼k z cannot hold in 〈〈ψ〉〉2x

• We finally obtain:
A |= φqf (a1, . . . , an) iff [[A]](a1,...,an) |= [[φqf ]](a1, . . . , an)
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The Existential Fragment - Positive Results (4)
Ensuring 1-data structure are well-formed

• To finish, we need to find a 1-data structure B such that
1. B has n elements a1, . . . , an
2. B |= [[φqf ]](a1, . . . , an)
3. B = [[A]](a1,...,an) for some 2-data structure A.
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The Existential Fragment - Positive Results (4)
Ensuring 1-data structure are well-formed

• To finish, we need to find a 1-data structure B such that
1. B has n elements a1, . . . , an
2. B |= [[φqf ]](a1, . . . , an)
3. B = [[A]](a1,...,an) for some 2-data structure A.

• For this last point, we ensure with formulas in FO1[Σ′] that
− the labeling by Pak[i,j] is consistent
− if a node is is not labelled by any Pak[i,j], its value is unique
− the same holds for nodes labelled by Pak[i,1] and Pa`[j,2]

• This gives rise to a formula φwf (x1, . . . , xn)

• Finally, ∃x1. . . . .∃xn.φqf (x1, . . . , xn) is satisfiable iff
∃x1. . . . .∃xn.[[φqf ]](x1, . . . , xn) ∧ φwf (x1, . . . , xn) is satisfiable.
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The Existential Fragment - Positive Results (5)
Other result

For all κ ≥ 1, Sat(∃-1-LFκ) is NEXP-complete.

Proof. Reduction to Sat(FO0):
• Take a formula in prenex normal form ∃x1. . . .∃xn.φqf (x1, . . . , xn)
• Take n elements a1, . . . , an of the structures
• Encode the relation with the data of ai’s by unary predicates
• Keep only the data in the views of ai’s not in relation with ai’s (at

most 1 per element because we have 2-neighborhoods)
• Ensure 0-data structures are well-formed

Theorem
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The Existential Fragment - Negative Results

Sat(∃-3-LF2) is undecidable.

Radius 3 and two data values

Theorem
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The Existential Fragment - Negative Results

1
1

2
1

3
2

3
3

a b

c

d

Sat(∃-3-LF2) is undecidable.

Radius 3 and two data values

Key idea for the proof:

- Some elements can be far
apart (e.g. a and d)

Theorem
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1
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2
1

3
2

3
3

f1

f2

1 2 3

1

2

3

a b

c

d

Sat(∃-3-LF2) is undecidable.

Radius 3 and two data values

Key idea for the proof:

- Some elements can be far
apart (e.g. a and d)

Theorem
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1
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2
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3
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3
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3
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3
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2
3
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1 2 3

1

2

3

a b

c
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Sat(∃-3-LF2) is undecidable.

Radius 3 and two data values

Key idea for the proof:

- Some elements can be far
apart (e.g. a and d)

- We can always add element
so the distance is ≤ 3

Theorem
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Key idea for the proof:
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- We can always add element
so the distance is ≤ 3

- The 3-view is the whole
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Theorem
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The Existential Fragment - Negative Results

1
1

1
1

2
1

2
1

3
1

1
2

1
3

2
2

3
2

3
2

3
3

3
3

2
3

f1

f2

1 2 3

1

2

3

a b

c

d

Sat(∃-3-LF2) is undecidable.

Radius 3 and two data values

Key idea for the proof:

- Some elements can be far
apart (e.g. a and d)

- We can always add element
so the distance is ≤ 3

- The 3-view is the whole
structure

Radius 2 and three data values

Sat(∃-2-LF3) is undecidable.

Theorem

Theorem
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The Existential Fragment - Conclusion
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Outline :

I - Motivations
II - Data Logic

III - Locality Explained
IV - The General Fragment
V - The Existential Fragment

VI - Conclusion & Outlook



Olivier Stietel · Local First Order Logic with Data 29/30

Conclusion & Outlook

On this work:
• Resolve the case of Sat(1-LF2) without restriction
• Try to apply this work for verification
• Study effective decidability and approximation methods

Broadly:
• Many theoretical results claim that (almost) nothing is possible in

distributed computing, while in practice, it’s ubiquitous in our
everyday life.
→ try to decrease the size of this gap
→ find better paradigms
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Recap

Logic r κ Relations Decidability status

− 0 ∅ NEXP-complete
FOκ − 1 {1∼1} N2EXP-complete

− 2 {1∼1, 2∼2} Undecidable
1 2 {1∼1, 2∼2, 1∼2} Decidable

r-LFκ
1 2 {1∼1, 2∼2, 2∼1} Decidable
2 2 {1∼1, 2∼2, 1∼2} Undecidable
3 2 {1∼1, 2∼2} Undecidable
1 ≥ 1 {1∼1} NEXP-complete

∃-r-LFκ
2 2 {1∼1, 2∼2, 1∼2, 2∼1} N2EXP-complete
3 2 {1∼1, 2∼2, 1∼2, 2∼1} Undecidable
2 3 All3 Undecidable


