Decidability results 0000000 Undecidability results 0000

On the Existential Fragments of Local First-Order Logics with Data

Benedikt Bollig, Arnaud Sangnier, Olivier Stietel

GandALF 2022

September 21, 2022

1/23

Benedikt Bollig, Arnaud Sangnier, Olivier Stietel Existential Local First-Order Logics with Data

Introduction

Decidability results

Undecidability results 0000

Context

- Data-aware systems are omnipresent
 - Database
 - Sets of data for learning
 - Distributed/ Concurrent Systems
- Need for specification languages to describe systems with data

Motivation

- Logic to specify input-output behavior of distributed algorithms
- Structures with two data values
- The input values can be compared with the output values

Consensus problem

- Famous problem in distributed computing
- The goal is to design an algorithm such that:
 - All entities in a network have an input value
 - They should all agree on the same value
 - The chosen value should be one of the input values

Decidability results

Undecidability results 0000

First-order logic with data values

Benedikt Bollig, Arnaud Sangnier, Olivier Stietel Existential Local First-Order Logics with Data

4/23

First-order	logic	with	data	values	
0000					

Decidability results

Undecidability results 0000

Structures

- Σ finite set of unary relation symbols
- D ≥ 0 an integer

Definition

A *D*-structure is a tuple $\mathfrak{A} = (A, (P_{\sigma})_{\sigma \in \Sigma}, f_1, \dots, f_D)$ where:

• A is the nonempty finite universe

•
$$P_{\sigma} \subseteq A$$
 for all $\sigma \in \Sigma$

• $f_1, \ldots, f_D : A \to \mathbb{N}$ map each element to D data values

Example (2-structure))				
	1 2	2 2 leader	32	1 2	

Benedikt Bollig, Arnaud Sangnier, Olivier Stietel Existential Local First-Order Logics with Data

Local first-order logic

Decidability results 0000000 Undecidability results 0000

Logic with data values

- Σ finite set of unary relation symbols
- D ≥ 0 an integer

Definition

The logic dFO[Σ , D] is given as follows:

$$\varphi ::= \sigma(x) \mid x \mid \sim_{j} y \mid x = y \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists x.\varphi$$

where $\sigma \in \Sigma$ and $i, j \in \{1, \dots, D\}$

Local first-order logic

Decidability results

Undecidability results 0000

Logic with data values

- Σ finite set of unary relation symbols
- D ≥ 0 an integer

Definition

The logic dFO[Σ , D] is given as follows:

$$\varphi ::= \sigma(x) \mid x \mid \sim_{j} y \mid x = y \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists x.\varphi$$

where $\sigma \in \Sigma$ and $i, j \in \{1, \dots, D\}$

Example $\begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \end{bmatrix} \stackrel{2}{}_{\text{leader}} \stackrel{3}{}_{2} \stackrel{1}{}_{2} \models \exists^{=1}x.\text{leader}(x) \land \forall y.\exists x.(\text{leader}(x) \land x_{1}\sim_{2} y)$

First-order logic with data values $000 \bullet$

Local first-order logic

Decidability results

Undecidability results 0000

Satisfiability problem

Definition

The problem DataSat(\mathcal{F}, D) is defined as follows:

Input: Finite set Σ ; sentence $\varphi \in \mathcal{F}[\Sigma; D]$.

Question: Is there a data structure \mathfrak{A} such that $\mathfrak{A} \models \varphi$?

First-order logic with data values $000 \bullet$

Local first-order logic

Decidability results

Undecidability results 0000

Satisfiability problem

Definition

The problem DataSat(\mathcal{F} , D) is defined as follows:

Input: Finite set Σ ; sentence $\varphi \in \mathcal{F}[\Sigma; D]$.

Question: Is there a data structure \mathfrak{A} such that $\mathfrak{A} \models \varphi$?

Theorem (Janiczak, 1953)

DataSat(dFO, 2) is undecidable, even when $\Sigma=\emptyset$ and without using $_{1}\sim_{2}$ and $_{2}\sim_{1}.$

First-order logic with data values $000 \bullet$

Local first-order logic

Decidability results

Undecidability results 0000

Satisfiability problem

Definition

The problem DataSat(\mathcal{F} , D) is defined as follows:

Input: Finite set Σ ; sentence $\varphi \in \mathcal{F}[\Sigma; D]$.

Question: Is there a data structure \mathfrak{A} such that $\mathfrak{A} \models \varphi$?

Theorem (Janiczak, 1953)

DataSat(dFO, 2) is undecidable, even when $\Sigma = \emptyset$ and without using $_{1}\sim_{2}$ and $_{2}\sim_{1}$.

Other related works:

• Works where the number of variables is bounded

[Kieronski and Tendera, 2009]

 Two-variable logic on data words [Bojanczyk, David, Muscholl, Schwentick, and Segoufin, 2011]

Decidability results

Undecidability results 0000

Local first-order logic

8/23

Local first-order logic

Decidability results 0000000 Undecidability results

Local logics reason about neighborhoods

• \mathfrak{A} — 2-data structure

Local first-order logic

Decidability results 0000000 Undecidability results

- 𝔅 2-data structure
- $\mathcal{G}(\mathfrak{A})$ data graph

Local first-order logic

Decidability results 0000000 Undecidability results

- \mathfrak{A} 2-data structure
- $\mathcal{G}(\mathfrak{A})$ data graph
- $B_2^{\mathfrak{A}}(a)$ 2-ball (blue nodes)

Decidability results 0000000 Undecidability results

- 𝔅 − 2-data structure
- $\mathcal{G}(\mathfrak{A})$ data graph
- $B_2^{\mathfrak{A}}(a)$ 2-ball (blue nodes)
- $\mathfrak{A}|_a^2$ 2-view of a

Decidability results

Undecidability results

- 𝔅 − 2-data structure
- $\mathcal{G}(\mathfrak{A})$ data graph
- $B_2^{\mathfrak{A}}(a) 2$ -ball (blue nodes)
- $\mathfrak{A}|_a^2$ 2-view of a
- local modality $\langle\!\langle \psi \rangle\!\rangle_x^2$ with $\psi \in \mathsf{FO}[\Sigma; \Gamma]$ can reason about $\mathfrak{A}|_a^2$

Local first-order logic

Decidability results 0000000 Undecidability results 0000

Local logic with data values

- Σ finite set of unary relation symbols
- D > 0 an integer

Definition

For a radius $r \in \mathbb{N}$, the logic *r*-Loc-dFO[Σ , *D*] is given as follows:

$$\varphi ::= \langle\!\langle \psi \rangle\!\rangle_x^r \mid x = y \mid \exists x.\varphi \mid \varphi \lor \varphi \mid \neg \varphi$$

where $\psi \in dFO[\Sigma, D]$.

Local first-order logic

Decidability results 0000000 Undecidability results 0000

Local logic with data values

- Σ finite set of unary relation symbols
- D > 0 an integer

Definition

For a radius $r \in \mathbb{N}$, the logic *r*-Loc-dFO[Σ , *D*] is given as follows:

$$\varphi ::= \langle\!\langle \psi \rangle\!\rangle_x^r \mid x = y \mid \exists x.\varphi \mid \varphi \lor \varphi \mid \neg \varphi$$

where $\psi \in dFO[\Sigma, D]$.

Example $\begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \end{bmatrix}_{\text{leader}} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \exists^{-1}x.\langle\!\langle \text{leader}(x)\rangle\!\rangle_x^1 \land \\ \forall y.\langle\!\langle \exists x.\text{leader}(x) \land y_2 \sim_1 x\rangle\!\rangle_y^1$

Benedikt Bollig, Arnaud Sangnier, Olivier Stietel Existential Local First-Order Logics with Data

10/23

Local first-order logic

Decidability results 0000000 Undecidability results 0000

Local logic with data values

- Σ finite set of unary relation symbols
- D > 0 an integer

Definition

For a radius $r \in \mathbb{N}$, the logic *r*-Loc-dFO[Σ , *D*] is given as follows:

$$\varphi ::= \langle\!\langle \psi \rangle\!\rangle_x^r \mid x = y \mid \exists x.\varphi \mid \varphi \lor \varphi \mid \neg \varphi$$

where $\psi \in dFO[\Sigma, D]$.

Benedikt Bollig, Arnaud Sangnier, Olivier Stietel Existential Local First-Order Logics with Data

Local first-order logic

Decidability results

Undecidability results 0000

Previous results [FSTTCS'21]

Theorem

```
DataSat(2-Loc-dFO, 2) is undecidable
```

Theorem

DataSat(1-Loc-dFO, 2) is decidable (with relations in $\{1 \sim 1, 2 \sim 2, 1 \sim 2\}$)

• Decidability of DataSat(1-Loc-dFO, 2) is an open problem

Local first-order logic

Decidability results 0000000 Undecidability results 0000

Previous results [FSTTCS'21]

Theorem

```
DataSat(2-Loc-dFO, 2) is undecidable
```

Theorem

DataSat(1-Loc-dFO, 2) is decidable (with relations in $\{1 \sim 1, 2 \sim 2, 1 \sim 2\}$)

• Decidability of DataSat(1-Loc-dFO, 2) is an open problem

THIS TALK: Find other decidable fragments

Decidability results

Undecidability results

The existential fragment

- Σ finite set of unary relation symbols
- D > 0 an integer

Definition

For a radius $r \in \mathbb{N}$, the logic \exists -*r*-Loc-dFO[Σ , *D*] is given as follows:

$$\varphi ::= \langle\!\langle \psi \rangle\!\rangle_x^r \mid x = y \mid x \neq y \mid \exists x.\varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi$$

where $\psi \in dFO[\Sigma, D]$.

Remark:

• No restriction on the quantifiers in ψ located in $\langle\!\langle\psi\rangle\!\rangle_x^r$

Decidability results •000000

Undecidability results 0000

Decidability results

13/23

Local first-order logic

Decidability results

Undecidability results

Preliminary results

• With 0 data value (classical decision problem for first order logic) [Böger, Grädel and Gurevich, 1997]

Theorem

DataSat(dFO, 0) is NEXP-complete.

 With 1 data value (equivalent satisfiability problem for Hybrid Logic over Kripke structues with equivalent relation) [Mundhenk and Schneider, 2009]

Theorem

DataSat(dFO, 1) is N2EXP-complete

Local first-order logic

Decidability results 000000

Undecidability results 0000

Theorem

 $DataSat(\exists -2-Loc-dFO, 2)$ is N2EXP-complete.

Decidability results 000000

Undecidability results 0000

Theorem

 $DataSat(\exists -2-Loc-dFO, 2)$ is N2EXP-complete.

Proof.

Reduction to DataSat(dFO, 1):

First result

Local first-order logic

Decidability results

Undecidability results 0000

Theorem

 $DataSat(\exists -2-Loc-dFO, 2)$ is N2EXP-complete.

Proof.

Reduction to DataSat(dFO, 1):

• Take a formula in prenex normal form

$$\exists x_1 \ldots \exists x_n . \varphi_{qf}(x_1, \ldots, x_n)$$

- Take *n* elements a_1, \ldots, a_n of the structures
- Encode the relation with the data of *a_i*'s by unary predicates
- Keep only the data in the views of a_i 's not in relation with a_i 's (at most 1 per element because we have 2-views)
- Ensure 1-data structures are well-formed

Local first-order logic

Decidability results

Undecidability results

From 2-data structure to 1-data structure

- Each element in $B_2^{\mathfrak{A}}(a)$ shares at least one data with a
- *P_{a[i,j]}*: the element has its *j*-th data equals to the *i*-th data of a

Local first-order logic

Decidability results

Undecidability results 0000

Translating the formula $\varphi_{qf}(x_1, \ldots, x_n)$

- We want to translate $\varphi_{qf}(x_1, \dots, x_n)$ into $\llbracket \varphi_{qf} \rrbracket (x_1, \dots, x_n)$ of dFO[$\Sigma', 1$]
- Main issue: formulas of the form $y_j \sim_k z$

Trick to solve this case when located in the subformula $\langle\!\langle \psi \rangle\!\rangle_x^2$:

Local first-order logic

Decidability results

Undecidability results 0000

Translating the formula $\varphi_{qf}(x_1, \ldots, x_n)$

- We want to translate $\varphi_{qf}(x_1, \ldots, x_n)$ into $[\![\varphi_{qf}]\!](x_1, \ldots, x_n)$ of dFO[$\Sigma', 1$]
- Main issue: formulas of the form $y_i \sim_k z$

Trick to solve this case when located in the subformula ⟨⟨ψ⟩⟩²_x:
the *j*-th data of *y* is in the radius 1 ball around *x*: *y* have to be labeled with P_{a[i,j]} and *z* with P_{a[i,k]} for *i* ∈ {1,2}

the *j*-th data of *y* is in the radius 2 ball but not in the radius 1 ball around *x*: *y* and *z* have the same data in the translated data structure

• the *j*-th data of *y* is **not** in the radius 2 ball around *x*:

• $y_{j} \sim_{k} z$ cannot hold in $\langle\!\langle \psi \rangle\!\rangle_{x}^{2}$

Local first-order logic

Decidability results

Undecidability results 0000

Translating the formula $\varphi_{qf}(x_1, \ldots, x_n)$

- We want to translate $\varphi_{qf}(x_1, \dots, x_n)$ into $[\![\varphi_{qf}]\!](x_1, \dots, x_n)$ of dFO[$\Sigma', 1$]
- Main issue: formulas of the form $y_j \sim_k z$

Trick to solve this case when located in the subformula ⟨⟨ψ⟩⟩²_x:
the *j*-th data of *y* is in the radius 1 ball around *x*: *y* have to be labeled with P_{a[i,j]} and *z* with P_{a[i,k]} for *i* ∈ {1,2}

the *j*-th data of *y* is in the radius 2 ball but not in the radius 1 ball around *x*:

• y and z have the same data in the translated data structure

• the *j*-th data of *y* is **not** in the radius 2 ball around *x*:

• $y_{j} \sim_{k} z$ cannot hold in $\langle\!\langle \psi \rangle\!\rangle_{x}^{2}$

• We obtain finally:

 $\mathfrak{A}\models\varphi_{qf}(a_1,\ldots,a_n) \text{ iff } \llbracket\mathfrak{A}\rrbracket_{(a_1,\ldots,a_n)}\models\llbracket\varphi_{qf}\rrbracket(a_1,\ldots,a_n)$

Decidability results 00000●0 Undecidability results 0000

Ensuring 1-data structure are well-formed

- \bullet To finish we need to find a 1-data structure ${\mathfrak B}$ such that
 - **1** \mathfrak{B} has *n* elements a_1, \ldots, a_n
 - $\mathfrak{B} \models \llbracket \varphi_{qf} \rrbracket (a_1, \ldots, a_n)$
 - $\mathfrak{B} = \llbracket \mathfrak{A} \rrbracket_{(a_1,\ldots,a_n)} \text{ for some 2-data structure } \mathfrak{A}.$
- For this last point, we ensure with formulas in $dFO[\Sigma', 1]$ that
 - The labeling by $P_{a_k[i,j]}$ is consistent
 - If a node is is not labelled by any $P_{a_k[i,j]}$ its value is unique
 - The same holds for elements labelled by $P_{a_k[i,1]}$ and $P_{a_\ell[j,2]}$
- This gives rise to a formula $\varphi_{wf}(x_1, \ldots, x_n)$
- Finally, $\exists x_1, \ldots, \exists x_n, \varphi_{qf}(x_1, \ldots, x_n)$ is satisfiable iff $\exists x_1, \ldots, \exists x_n, \llbracket \varphi_{qf} \rrbracket (x_1, \ldots, x_n) \land \varphi_{wf}(x_1, \ldots, x_n)$ is satisfiable

18/23

Local first-order logic

Decidability results

Undecidability results 0000

Theorem

For all $D \ge 1$, DataSat(\exists -1-Loc-dFO, D) is NEXP-complete.

Other result

Local first-order logic

Decidability results

Undecidability results 0000

Theorem

For all $D \ge 1$, DataSat(\exists -1-Loc-dFO, D) is NEXP-complete.

Proof.

Reduction to DataSat(dFO, 0):

Decidability results 000000 Undecidability results 0000

Theorem

For all $D \ge 1$, DataSat(\exists -1-Loc-dFO, D) is NEXP-complete.

Proof.

Reduction to DataSat(dFO, 0):

- Take a formula in prenex normal form $\exists x_1 \dots \exists x_n . \varphi_{qf}(x_1, \dots, x_n)$
- Take *n* elements a_1, \ldots, a_n of the structures
- Encode the relation with the data of *a_i*'s by unary predicates
- Keep only the data in the views of *a*_i's not in relation with *a*_i's (at most 1 per element because we have 2-neighborhoods)
- Ensure 0-data structures are well-formed

Decidability results

Undecidability results •000

Undecidability results

20/23

Local first-order logic

Decidability results

Undecidability results 0000

Radius 3 and two data values

Theorem

 $DataSat(\exists -3-Loc-dFO, 2)$ is undecidable.

Local first-order logic

Decidability results

Undecidability results 0000

Radius 3 and two data values

Theorem

$DataSat(\exists -3-Loc-dFO, 2)$ is undecidable.

Proof.

- Reduction from DataSat(dFO, 2)
- We can translate any 2-data structure ${\mathfrak A}$ into another one ${\mathfrak B}$ such that:
 - $\bullet\,$ In $\mathfrak{B},$ all the elements are located in the radius 3 balls of any elements
 - To obtain ${\mathfrak B}$ from ${\mathfrak A}:$ add elements of the form (v,v') where v and v' are data present in ${\mathfrak A}$
 - Label these new elements with a specific predicate
 - Lastly use that in $\langle\!\langle\psi\rangle\!\rangle_{\rm x}^{\rm 3},$ there is no restriction of ψ in the existential fragment

21/23

Local first-order logic

Decidability results

Undecidability results

Radius 2 and three data values

Theorem

```
DataSat(\exists -2-Loc-dFO, 3) is undecidable.
```

Local first-order logic

Decidability results

Undecidability results

Radius 2 and three data values

Theorem

```
DataSat(\exists -2-Loc-dFO, 3) is undecidable.
```

Proof.

- Reduction from DataSat(dFO, 2)
- We can translate any 2-data structure \mathfrak{A} into a 3-data structure \mathfrak{B} such that:
 - $\bullet\,$ In $\mathfrak{B},$ all the elements are located in the radius 2 balls of any elements
 - To obtain ${\mathfrak B}$ from ${\mathfrak A},$ we add a third value equal to 0 to all elements

Local first-order logic

Decidability results 0000000 Undecidability results

Conclusion and Future Works

Satisfiability of the existential fragments:

Perspectives:

- Study other fragments with quantifiers restrictions
- Develop approximation methods

Thank you!