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Résumé en Français

Ce manuscrit s’inscrit dans le domaine de la vérification formelle, une discipline informatique
visant à garantir l’absence d’erreurs dans les programmes. Dans ce contexte, la spécification
en est une facette, et consiste à énoncer formellement les propriétés que le programme doit
satisfaire. Notre focus se porte sur les algorithmes distribués, qui sont particulièrement
difficile à conceptualiser. Pour aborder cette problématique, nous explorons les logiques
avec données, adaptées à cet usage. Dans notre cadre, une donnée est un élément d’un
ensemble dénombrable, les éléments des structures ont une ou plusieurs données et la logique
peut seulement tester si deux données sont égales ou non. La manière dont nous analysons
les logiques est au travers du problème de la satisfaisabilité. Cette étude débute par un
état de l’art des résultats concernant différentes logiques sur diverses structures telle que
les mots, les multi-ensembles, les mots avec données, les multi-ensembles avec données et
les graphes. Nous comblons quelques lacunes identifiées dans la littérature, notamment des
preuves manquantes et des cas non étudiés. Nous exposons également deux outils classiques
pour aider à l’analyse du problème de la satisfaisabilité, à savoir les jeux d’Ehrenfeucht-
Fraïssé et les problèmes de dominos. Ensuite, commence l’apport principale de ce travail qui
réside dans la définition et l’étude d’une nouvelle logique avec données, que nous appelons
le fragment local, introduisant à cet effet la modalité locale. Inspirée par la notion de
localité et de graphe de Gaifman, notre approche se distingue par l’intégration de la localité
dans la définition de notre logique, au niveau de la syntaxe. Nous définissons également un
sous-fragment appelé le fragment existentiel. Nous démontrons que notre logique constitue
effectivement un fragment de la logique du premier ordre, en cela que la modalité local peut
s’exprimer dans la logique du premier ordre. Par la suite, nous analysons notre nouvelle
logique sous l’angle du problème de la satisfaisabilité. Nous identifions des critères pour
lesquels la logique est décidable et d’autres pour lesquels elle ne l’est pas. De plus, dans les
cas où la logique est décidable, nous nous efforçons d’analyser la complexité du problème
de la satisfaisabilité.

Mots-clés logique, vérification, spécification, donnée, premier-ordre, multi-ensemble, sat-
isfaisabilité, distribué
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Abstract in English

This manuscript is part of the field of formal verification, a computer science discipline
aimed to ensure that programs are error-free. In this context, specification is one facet
which consists of formally stating the properties the program has to satisfy. Our focus is
on distributed algorithms which are particularly difficult to conceptualise. To tackle this
problem, we explore data logic which is adapted to this purpose. In our framework, a data
value is an element of a countable set, elements of structures have one or more data values
and the logic can only test whether two data values are equal or not. The logics are analysed
through the lens of the satisfiability problem. This work begins by exposing the state of
the art concerning different logics on various structures such as words, multisets, data-
words, data-multisets and graphs. Some identified gaps in the literature are filled, including
missing proofs and unexplored cases. Additionally, two classical helpful tools in the analysis
of the satisfiability problem are presented, namely Ehrenfeucht-Fraïssé games and domino
problems. Afterwards, the main contribution of this work begins which is the definition
and study of a new data logic, called the local fragment, introducing for this purpose
the local modality. Inspired by the notion of locality and Gaifmans’ graphs, our approach
distinguishes itself by integrating locality in the definition of our logic, at the level of syntax.
We show that our logic is indeed a fragment of first-order logic, as the local modality can
be expressed in first-order logic. A sub-fragment called the existential fragment is also
defined. Subsequently, our new logic from the point of view of the satisfiability problem is
analysed; is identified criteria for which the logic is decidable and others for which it is not.
Furthermore, in the cases where the logic is decidable, we try to analyse the complexity of
the satisfiability problem, and succeeded in most of the cases.

Keywords logic, verification, specification, data, data values, first-order, multiset, data-
multiset, satisfiability, distributed
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Chapter 1

Introduction

The introduction is first in french, and then in english. The content of the two versions are
exactly the same.

1.1 Introduction in French

1.1.1 Motivations Générales

Vérification L’informatique est une discipline à multiples facettes qui va au-delà du
simple calcul sur ordinateur et s’appuie sur la mécanisation de la pensée grâce à un empile-
ment de couches successives d’abstractions. Son but ultime étant d’obtenir une séquence
de chaînes mécaniques et causales conduisant à des comportements hautement complexes.
Cependant, cette réalisation ne se fait pas d’un seul geste; au contraire, elle nécessite
l’accumulation progressive de différents niveaux d’abstraction, chacun contribuant à penser
et maîtriser la complexité inhérente.

Le processus d’abstraction commence au niveau le plus fondamental, comprenant les
composants électroniques jusqu’à atteindre le niveau du processeur. De là, il passe aux
langages compilés avant d’atteindre son apogée au niveau du langage de programmation
de haut niveau, culminant dans le développement d’une application logicielle concrète.
Chacune de ces étapes de la progression recèle sa propre hiérarchie d’abstractions, chaque
couche apportant une dimension supérieure de compréhension et de manipulation.

Le processus de développement se déroule typiquement par tâtonnement, ce qui implique
des essais et des erreurs. Dans un premier temps, un prototype est créé puis testé et
des erreurs sont identifiées. Par la suite, le prototype est amélioré et le cycle se répète.
Finalement, la décision est prise que le prototype est prêt, mais l’élimination complète
des bugs reste insaisissable. Les bugs ont tendance à persister, ce qui est particulièrement
problématique pour les applications critiques. Cela soulève la question de trouver une
meilleur méthode que des tests. La solution que nous proposons consiste à appliquer des
principes mathématiques rigoureux pour atteindre un niveau de confiance inégalé dans nos
systèmes informatiques.

7



8 CHAPTER 1. INTRODUCTION

Logique La logique, discipline fondamentale des mathématiques et de la philosophie, est
une pierre angulaire de l’informatique. La logique a de nombreuses applications, de la
conception de compilateurs aux bases de données, en passant par l’intelligence artificielle,
la sémantique des langages de programmation et la sécurité informatique. Mais ici, nous
nous concentrons uniquement sur la vérification. La logique permet de s’assurer qu’un
programme fonctionne comme prévu. L’intérêt de la logique est double. Le premier est
de pouvoir s’assurer, par une série de déductions, que notre programme ou algorithme
fait ce que nous voulons qu’il fasse. Le second, plus subtil, est de pouvoir exprimer ce
que nous attendons de notre algorithme. C’est ce qu’on appelle l’expressivité. Le langage
naturel est mal adapté à cette tâche. Un exemple convaincant est toute la subtilité que les
opérateurs modaux F et G de LTL nous permettent d’exprimer de façon claire, concise et
sans ambiguïté.

Systèmes Distribués Les algorithmes usuels fonctionnent dans un environnement in-
formatique centralisé, où une seule entité informatique exécute des instructions de manière
séquentielle pour résoudre un problème. Ils présupposent l’accès à une mémoire globale
et peuvent s’appuyer sur la puissance de calcul et les ressources d’un seul processeur. Les
algorithmes distribués, en revanche, sont spécifiquement conçus pour les environnements
informatiques décentralisés. Ils impliquent plusieurs entités autonomes (nœuds ou proces-
sus) qui interagissent sur un réseau pour résoudre collaborativement un problème. Ces
algorithmes doivent tenir compte de l’absence de mémoire globale et de la nécessité d’une
communication et d’une coordination entre les entités distribuées. Les principales problé-
matiques des algorithmes distribués comprennent la gestion des questions de concomitance,
de synchronisation, de transmission de messages, de tolérance aux pannes et de redimen-
sionnement, qui ne sont habituellement pas rencontrées dans les algorithmes usuels.

Ce changement de paradigme que nous demande l’informatique distribuée est tout sauf
mineur. Il rend la conception des algorithmes particulièrement compliquée, bien plus que
dans les cas séquentiels, à tel point que même les experts commettent encore des erreurs,
non seulement des erreurs d’implémentation facilement corrigibles, mais également des er-
reurs irréparables au stade de la conception. La vérification peut donc s’avérer utile pour
les algorithmes distribués. En général, la vérification n’est pas une pratique répandue
dans l’industrie parce qu’elle est coûteuse et prend du temps, ce qui rend le rapport béné-
fice/coût trop peu intéressant. Elle est réservée à quelques applications de niche où des
vies humaines sont en jeu (transport, nucléaire) ou lorsque d’énormes sommes d’argent sont
en jeu (finance). En revanche, dans le domaine de l’informatique distribuée, elle permet
déjà de trouver des erreurs qui n’auraient pas été détectées autrement. Un exemple en est
l’utilisation de TLA+ dans l’industrie [53, 3], où elle a aidé à identifier des interblocage et
d’autres défauts de conception.

1.1.2 Motivations Spécialisées

Les logiques avec données ont été introduites afin de raisonner sur des structures dont les
éléments sont étiquetés par des données prisent dans un alphabet infini (e.g. documents
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XML) [45]. Parmi les fragment expressifs et décidables, il y a notamment la logique à deux
variable sur les mots et les arbres [7, 6]. La frontière de la décidabilité est cependant fragile;
par exemple, les extensions avec deux données par éléments sont rapidement indécidables
pour le problème de la satisfaisabilité. Néanmoins, du point de vue de la modélisation, ces
extension jouent encore un rôle important. D’autres types de logiques permettent d’avoir
deux données par éléments [31, 34], bien qu’elles ne supposent pas un univers linéairement
ordonné ou arborescent. Là encore, la satisfaisabilité s’avère être décidable pour le frag-
ment à deux variables de la logique du premier ordre. Lorsque l’on considère un nombre
arbitraire de variables du premier ordre, ce que nous faisons dans ce travail, la frontière
de la décidabilité est rapidement franchie sans contraintes supplémentaires. La restriction
que nous considérons ici est la localité, un concept essentiel de la logique du premier or-
dre. Il est notoirement connu que la logique du premier ordre n’est capable d’exprimer
que des propriétés locales : une formule du premier ordre peut toujours être écrite comme
une combinaison de propriétés d’éléments qui ont une distance limitée, c’est-à-dire limitée
par un rayon donné, par rapport à certains points de référence [27, 23]. En présence de
(plusieurs) données, imposer une restriction de localité la logique peut contribuer à garantir
la décidabilité de son problème de satisfaisabilité, comme nous le verrons ultérieurement.

À partir du chapitre 3, nous ne considérerons uniquement une extension naturelle de la
logique du premier ordre sur des structures non ordonnées dont les éléments possèdent un
nombre fixe de données provenant d’un domaine infini. Lorsqu’on spécifie le comportement
entrée-sortie des algorithmes distribués [21, 38], les processus reçoivent une valeur d’entrée
et produisent une valeur de sortie, ce qui nécessite deux données par processus. Dans
les algorithmes d’élection d’un leader ou de renommage, par exemple, un processus reçoit
son identifiant unique en entrée et doit finalement produire l’identifiant d’un leader com-
mun (élection de leader) ou un identifiant unique provenant d’un espace de noms restreint
(renommage). Il y a deux différences majeures entre la plupart des formalismes existants et
notre langage. Alors que les autres logiques avec données sont généralement interprétées sur
des mots ou des arbres, nous considérons des structures non ordonnées (ou multi-ensembles).
Si chaque élément d’une telle structure représente un processus, nous ne présupposons alors
pas d’architecture de communication particulière, nous considérons plutôt un nuage d’unités
de calcul. En outre, les logiques avec données décidables sont généralement limitées à une
donnée par élément, ce qui n’est pas suffisant pour modéliser une relation d’entrée-sortie.
Par conséquent, nos modèles sont des structures algébriques composées d’un univers et de
fonctions attribuant à chaque élément un nombre fixe d’entiers. il est à noter que pour de
nombreux algorithmes distribués, les valeurs précises des données ne sont pas pertinentes;
il en retourne que la plupart du temps, ce que compte est de savoir si certaines données
sont égales ou non. Pareillement à [7, 6], nous ajoutons donc des relations binaires qui nous
permettent de tester si deux valeurs de données sont identiques et, par exemple, si toutes
les valeurs de sortie étaient déjà présentes dans la collection des valeurs d’entrée (comme
requis pour l’élection d’un leader).

La première question fondamentale qui se pose est de savoir si une spécification donnée
est cohérente; cela nous conduit au problème de la satisfaisabilité. Bien que la logique
générale considérée ici s’avère être indécidable dans plusieurs contextes restrictifs, notre
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résultat principal montre que plusieurs fragments intéressants préservent la décidabilité.
Ces fragments sont des logiques local dans le sens où les données ne peuvent être comparées
que dans le voisinage direct d’un processus (quantifié) de référence.

Travaux Apparentés Les extensions orthogonales avec de multiples données incluent
les shuffle expressions for nested data [4] et les logiques temporelles [30, 15]. D’autres
généralisations des logiques avec données permettent d’ordonner les valeurs des données
[39, 47]. L’application de méthodes formelles dans le contexte des algorithmes distribués
est une approche plutôt récente mais prometteuse (cf. pour une vue d’ensemble [35]). Une
branche particulière est le domaine des systèmes paramétrés, qui, plutôt que de se concentrer
sur les données, se concentre sur le nombre (non borné) de processus comme paramètre
[5, 18]. D’autres travaux connexes incluent [17], qui considère les logiques temporelles
impliquant des quantifications sur les processus mais sans données, tandis que [1] introduit
une variante (indécidable) de la logique dynamique propositionnelle qui permet de raisonner
sur les identificateurs de processus totalement ordonnés dans les architectures en anneau.
Les logiques du premier ordre pour synthétiser les algorithmes distribués ont été examinées
dans [8, 25].

1.1.3 Disgression Mathématique

Dans cette sous-section, nous parlerons principalement de mathématiques. Cette sous-
section se veut être compréhensible pour un mathématicien, ou au moins un logicien, qui
n’a jamais étudié l’informatique.

Ce travail de logique est orienté vers la vérification. La plus grande différence avec la
logique mathématique est que nous ne considérons ici que des structures finies. Dans cette
sous-section uniquement, nous ferons référence à la théorie des modèles larges comme étant
la théorie qui autorise des structures de toute cardinalité, et à la théorie des modèles finis
comme étant la théorie qui n’autorise que des structures finis. Ainsi, la théorie des modèles
larges est celle que l’on rencontre le plus souvent en mathématiques, tandis que la théorie
des modèles finis prédomine en informatique. Loin d’être une distinction mineure, cela a de
nombreuses implications, la plus importante étant que le théorème de compacité est faux
dans le cas fini. Pour illustrer cela, nous pouvons considérer la suite de formules (λn)n qui
stipule que le modèle a au moins n éléments. Toute sous-séquence finie est satisfaisable,
mais la séquence entière ne l’est pas. Ceci a des implications positives et négatives qui sont,
en somme, incommensurables.

Un effet positif notable est l’élimination de constructions étranges telles que les modèles
non standard et les éléments non standard, cela a pour conséquence que nous n’avons pas
à traiter les entiers qui ne sont pas un successeur itéré de 0. Du côté négatif, il y a le
théorème de préservation de Łoś-Tarski, un résultat classique de la théorie des modèles
larges, qui n’est plus vrai dans le cas fini. Ce théorème stipule qu’une formule préservée par
l’extension des structures est équivalente à une formule existentielle. Une autre implication
négative est qu’il n’existe pas de système de preuve complet, i.e. qui puisse refléter la vérité
sémantique. C’est une conséquence directe de l’absence de théorème de complétude.
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Dans un sens neutre, dans la théorie des modèles larges, le problème de validité est
semi-décidable (il suffit d’énumérer tous les arbres de preuve et de voir si l’un d’entre eux
prouve la formule). Dans la théorie des modèles finis, en revanche, c’est le problème de la
satisfaisabilité qui est semi-décidable (il suffit d’énumérer toutes les structures et de voir
si l’une d’entre elles satisfait la formule). Il est intéressant de noter que les problèmes de
validité et de satisfaisabilité sont complémentaires l’un de l’autre, ce qui crée une symétrie
entre les deux théories des modèles. De plus, combiné au fait que le problème de satis-
faisabilité est indécidable en général pour la théorie des modèles finis, il fournit un autre
argument contre l’existence d’un système de preuve complet.

1.1.4 Contributions et Organisation du Manuscrit

Dans le chapitre 2, nous commençons par la section 2.1 en donnant la définition générale de
structures, logiques et problèmes de satisfaisabilité utilisées dans ce travail. Ensuite, dans
la section 2.2, nous exposons les outils fréquemment utilisés dans l’étude des problèmes de
satisfaisabilité. En particulier, pour les bornes supérieures, nous présentons la propriété
du petit modèle et les jeux d’Ehrenfeucht-Fraïssé, tandis que pour les bornes inférieures,
nous introduisons le problème du pavage. Dans la section 2.3, nous présentons un cata-
logue de résultats sur le problème de la satisfaisabilité sur les mots, les multi-ensembles,
les mots avec données, les graphes et les multi-ensembles avec données. En outre, nous
fournissons une preuve plus accessible du résultat déjà connu selon lequel FO3 sur les
graphes est indécidable (Théorème 2.3.20). Nous prouvons également le résultat connu
mais avec une preuve manquante de l’indécidabilité de FO sur deux relations d’équivalence
(Théorème 2.3.27). Nous faisons même plus, car notre preuve améliore encore le résultat,
jusqu’à FO3 (Théorème 2.3.31).

Dans le chapitre 3, nous explorons le concept de localité sur les multi-ensembles avec
données. Dans la section 3.1, nous définissons notre fragment local. Puis, dans la section 3.2,
nous exposons des résultats fondamentaux sur les fragments locaux, ce qui constitue une
contribution originale à ce travail. Nous commençons par montrer que nous pouvons in-
ternaliser la distance dans la logique du premier ordre, pour ensuite utiliser ce fait afin
d’établir des inclusions entre les différents fragments. Enfin, nous examinons le lien entre
notre notion de graphe de données et la notion de graphe de Gaifman.

Dans le chapitre 4, nous étudions le fragment principal et décrivons la frontière entre la
décidabilité et l’indécidabilité. Nous démontrons que le problème de satisfaisabilité de ce
fragment est décidable lorsque l’on restreint les propriétés locales au rayon 1 (section 4.2,
théorème 4.2.19). Cependant, pour tout rayon strictement supérieur à 1, le problème est
indécidable (section 4.3, théorèmes 4.3.5 et 4.3.9). il est à noter que l’ajout d’une seule
relation diagonale constitue toujours une extension de la logique du premier ordre à deux
variables (décidable) avec deux relations d’équivalence [32, 31, 34] : les classes d’équivalence
sont constituées des éléments ayant la même première valeur, respectivement, la même deux-
ième valeur. Pour aller plus loin, notre principale contribution technique est une réduction
vers cette logique à deux variables. Cette réduction nécessite un réétiquetage minutieux des
structures sous-jacentes afin de pouvoir exprimer la relation diagonale en termes de deux
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relations d’équivalence. En outre, la réduction tient compte du fait que notre logique ne
restreint pas le nombre de variables. Nous pouvons en effet compter les éléments jusqu’à
un certain seuil et exprimer, par exemple, qu’au plus cinq processus se bloquent (dans le
contexte des algorithmes distribués). Ceci n’est a priori pas possible avec une logique à
deux variables.

Dans le chapitre 5, nous étudions le fragment local orthogonal dans lequel la quantifi-
cation globale est restreinte à être existentielle (tandis que la quantification à l’intérieur
d’une modalité locale reste non restreinte). Dans sa première section 5.1, nous obtenons
la décidabilité pour (i) le rayon 1 et un nombre arbitraire de données (théorème 5.1.9), et
pour (ii) un rayon 2 et deux données (théorème 5.1.6). Dans tous les cas, nous fournissons
des bornes supérieures et inférieures de complexité strictes. De plus, ces résultats marquent
la frontière exacte de la décidabilité : la section 5.2 montre que la satisfaisabilité est indé-
cidable dès que l’on considère le rayon 3 en présence de deux données (théorème 5.2.3), ou
le rayon 2 avec trois données (théorème 5.2.5).

1.2 Introduction in English

1.2.1 General Motivations

Verification Computer science is a multifaceted discipline that goes beyond mere com-
putation, instead relying on the mechanization of thought through the application of suc-
cessive layers of abstractions. Its ultimate goal is to achieve a sequence of mechanical and
causal chains leading to highly complex behaviours. However, this achievement does not
occur in one fell swoop; rather, it requires the progressive accumulation of various levels of
abstraction, each contributing to mastering and rationalizing inherent complexity.

The process commences at the most fundamental level, encompassing hardware com-
ponents, and then ascends to the processor level. From there, it moves on to compiled
languages before reaching its zenith at the high-level programming language, culminating
in the development of a concrete software application. Each of these stages in the progres-
sion harbours its own hierarchy of abstractions, with each layer bringing a higher dimension
of understanding and manipulation.

The typical development process involves trial and error. Initially, a prototype is cre-
ated, tested, and errors are identified. Subsequently, the prototype is enhanced, and the
cycle repeats. Eventually, a decision is made that the prototype is ready, but complete
bug-proofing remains elusive. Bugs tend to persist, which is particularly problematic for
critical applications. This raises the question of finding a superior approach to testing. Our
proposed solution involves the application of rigorous mathematical principles to attain an
unparalleled level of confidence in our computer systems.

Logic Logic, as a fundamental discipline within mathematics and philosophy, serves as
the cornerstone of computer science. Logic has many applications, from compiler design
to databases, artificial intelligence, semantics of programming languages, and computer
security. But here, we focus only on verification. Logic helps ensure that a program works
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as intended. The interest in logic is twofold. The first is to be able to ensure through a
series of deductions that our program or algorithm does what we want it to do. And the
second, more subtle one, is to be able to express what we desire from our algorithm. This
is called expressiveness. Natural language is poor for this task. A good example is all the
subtlety that the modal operators F and G of LTL allow us to express clearly, concisely,
and without ambiguity.

Distributed systems Regular algorithms operate in a centralized computing environ-
ment, where a single computing entity executes instructions sequentially to solve a problem.
They assume access to a global memory and can rely on a single processor’s computational
power and resources. Distributed algorithms, on the other hand, are specifically tailored for
decentralized computing environments. They involve multiple autonomous entities (nodes
or processes) that interact over a network to collaboratively solve a problem. These al-
gorithms must account for the lack of global memory and the need for communication
and coordination between distributed entities. Key challenges in distributed algorithms
include handling issues of concurrency, synchronization, message passing, fault tolerance,
and scalability, which are not typically encountered in regular algorithms.

These changes towards distributed computing are far from minor. It makes the design of
algorithms particularly complicated, much more so than in sequential cases, to the extent
that even experts still make mistakes, not just easily correctable implementation errors,
but rather irreparable mistakes at the design stage. So, verification has the potential to
be useful for distributed algorithms. Generally, verification is not a widespread practice in
industry because it is costly and time-consuming which makes the benefit/cost ratio not
interesting enough. It is reserved for a few niche applications where human lives are at
stake (transport, nuclear) or when huge sums of money are involved (finance). Whereas in
distributed computing, it already helps to find errors which were unnoticeable otherwise.
One example of this is the usage of TLA+ in industry [53, 3], where it helped to find
deadlock and other design flaws.

1.2.2 Specialized Motivations

Data logics have been introduced to reason about structures whose elements are labeled
with a value from an infinite alphabet (e.g., XML documents) [45]. Expressive decidable
fragments include notably two-variable logics over words and trees [7, 6]. The decidability
frontier is fragile, though. Extensions to two data values, for example, quickly lead to an
undecidable satisfiability problem. From a modeling point of view, those extensions still
play an important role. Other types of data logics allow two data values to be associated
with an element [31, 34], though they do not assume a linearly ordered or tree-like universe.
Again, satisfiability turned out to be decidable for the two-variable fragment of first-order
logic. When considering an arbitrary number of first-order variables, which we do in this
work, the decidability frontier is quickly crossed without further constraints. One of the
restrictions we consider here is locality, an essential concept in first-order logic. It is well
known that first-order logic is only able to express local properties: a first-order formula
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can always be written as a combination of properties of elements that have limited, i.e.,
bounded by a given radius, distance from some reference points [27, 23]. In the presence
of (several) data values, imposing a corresponding locality restriction on a logic can help
ensuring decidability of its satisfiability problem.

From Chapter 3, we only consider a natural extension of first-order logic over unordered
structures whose elements carry a fixed number of data values from an infinite domain.
When specifying the input-output behavior of distributed algorithms [21, 38], processes get
an input value and produce an output value, which requires two data values per process. In
leader election or renaming algorithms, for instance, a process gets its unique identifier as
input, and it should eventually output the identifier of a common leader (leader election) or
a unique identifier from a restricted name space (renaming). There are two major differences
between most existing formalisms and our language. While previous data logics are usually
interpreted over words or trees, we consider unordered structures (or multisets). When each
element of such a structure represents a process, we therefore do not assume a particular
processes architecture, but rather consider clouds of computing units. Moreover, decidable
data logics are usually limited to one value per element, which would not be sufficient to
model an input-output relation. Hence, our models are algebraic structures consisting of
a universe and functions assigning to each element a fixed number of integers. We remark
that, for many distributed algorithms, the precise data values are not relevant, as a matter
of fact, often what really matters is whether or not some data are equal. Like [7, 6], we thus
add binary relations that allow us to test if two data values are identical and, for example,
whether all output values were already present in the collection of input values (as required
for leader election).

The first fundamental question that arises is whether a given specification is consistent.
This leads us to the satisfiability problem. While the general logic considered here turns out
to be undecidable already in several restricted settings, our main result shows that some
interesting fragments preserve decidability. The fragments are local logic in the sense that
data values can only be compared within the direct neighborhood of a (quantified) reference
process.

More Related Work Orthogonal extensions for multiple data values include shuffle
expressions for nested data [4] and temporal logics [30, 15]. Other generalizations of data
logics allow for an order on data values [39, 47]. The application of formal methods in the
context of distributed algorithms is a rather recent but promising approach (cf. for a survey
[35]). A particular branch is the area of parameterized systems, which, rather than on data,
focuses on the (unbounded) number of processes as the parameter [5, 18]. Other related
work includes [17], which considers temporal logics involving quantification over processes
but without data, while [1] introduces an (undecidable) variant of propositional dynamic
logic that allows one to reason about totally ordered process identifiers in ring architectures.
First-order logics for synthesizing distributed algorithms were considered in [8, 25].
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1.2.3 Mathematical Discussion

In this subsection, we will primarily discuss mathematics. This subsection should be un-
derstandable for a mathematician, or at least a logician, who has never studied computer
science.

This work in logic is oriented towards verification. The biggest difference from math-
ematical logic is that we consider only finite structures here. In this subsection only, we
will refer to large model theory as the theory that allows models of any cardinality, and
finite model theory as the theory that only allows finite models. Therefore, large model
theory is the one encountered most frequently in mathematics, while finite model theory
predominates in computer science. Far from being a minor distinction, this has many impli-
cations, the most significant being that the compactness theorem is false in the finite case.
To illustrate this, we can consider the sequence of formulas (λn)n which states that the
model has at least n elements. Any finite subsequence is satisfiable, but the entire sequence
is not. This has positive and negative implications, which are, in sum, immeasurable.

One positive effect is the elimination of strange things like non-standard models and
non-standard elements, so for example we do not have to deal with integers which are
not an iterated successor of 0. On the negative side, there is the Łoś–Tarski preservation
theorem, a classic result in large model theory, which is no longer true in the finite case.
This theorem states that a formula preserved under model expansion is equivalent to an
existential formula. Another negative implication is that there is no complete proof system,
i.e., one that can reflect semantic truth. This is a direct consequence of the absence of a
completeness theorem.

In a neutral sense, in broad model theory, the validity problem is semi-decidable (you
just need to enumerate all proof trees and see if any tree proves the formula). In finite model
theory, on the other hand, it is the satisfiability problem that is semi-decidable (you just
need to enumerate all structures and see if any satisfies the formula). It is interesting to note
that the problems of validity and satisfiability are complementary to each other, creating a
symmetry between the two model theories. Moreover, when combined with the fact that the
satisfiability problem is undecidable in general for finite model theory, it provides another
argument against the existence of a complete proof system.

1.2.4 Contributions and Organisation of the Thesis

In Chapter 2, we start with Section 2.1 by giving the general definition of structures,
logics and satisfiability problems used in this work. Next in Section 2.2, we expose tools
frequently used when studying satisfiability problems. Specifically, for upper bounding,
we present the small model property and the Ehrenfeucht-Fraïssé games, whereas for lower
bounds, we introduce the tiling problem. In Section 2.3 we present a catalogue of the results
on the satisfiability problem over words, multisets, data-words, graphs and data-multisets.
Additionally, we provide a more accessible proof of the already known result that FO3 over
graphs is undecidable (Theorem 2.3.20). We also prove the known result but with a missing
proof of the undecidability of FO over two equivalence relations (Theorem 2.3.27). In fact,
our proof improves the result further, down to FO3 (Theorem 2.3.31).
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In Chapter 3, we explore the concept of locality over data-multisets. In Section 3.1
define our local fragment. Then in Section 3.2, we expose fundamental results on the local
fragments, which is an original contribution of this work. We start by showing that we can
internalize the distance in first-order logic, and then use this to establish inclusions between
different fragments. Finally we examine the connection between our notion of data graph
with the notion of Gaifman graph.

In Chapter 4, we study the main fragments and depict the frontier between decidability
and undecidability. We show that the fragment has a decidable satisfiability problem when
restricting local properties to radius 1 (Section 4.2, Theorem 4.2.19). However, for any
radius greater than 1 it is undecidable (Section 4.3, Theorems 4.3.5 and 4.3.9). Note that
adding only one diagonal relation still constitutes an extension of the (decidable) two-
variable first-order logic with two equivalence relations [32, 31, 34]: equivalence classes
consist of those elements with the same first value, respectively, second value. In fact, our
main technical contribution is a reduction to this two-variable logic. The reduction requires
a careful relabelling of the underlying structures so as to be able to express the diagonal
relation in terms of the two equivalence relations. In addition, the reduction takes care of
the fact that our logic does not restrict the number of variables. We can actually count
elements up to some threshold and express, for instance, that at most five processes crash
(in the context of distributed algorithms). This is a priori not possible in two-variable logic.

In Chapter 5, we study orthogonal local fragments where global quantification is re-
stricted to being existential (while quantification inside a local modality remains unre-
stricted). In its first Section 5.1, we obtain decidability for (i) radius 1 and an arbitrary
number of data values (Theorem 5.1.9), and for (ii) radius 2 and two data values (Theo-
rem 5.1.6). In all cases, we provide tight complexity upper and lower bounds. Moreover,
these results mark the exact decidability frontier: Section 5.2 shows that satisfiability is
undecidable as soon as we consider radius 3 in presence of two data values (Theorem 5.2.3),
or radius 2 together with three data values (Theorem 5.2.5).



Chapter 2

Exploring Data Logics

The aim of this chapter is to explore established results on logic with data. The first section
sets out the definitions needed to talk with ease about this subject. The second section
then introduces techniques that often arise when analysing satisfiability problems. Lastly,
the third section truly explores logic with data.

2.1 Gearing up: the Definitions

This section is devoted to the definitions. They are general, in order to cover all the cases
seen in this work. We first define structures, then logics and finally the satisfiability problem.

2.1.1 Structures

By N we denote the set of natural numbers including 0 and we define N as N∪{∞}.
Let Σ be a finite set of unary predicates and Γ a finite set of binary predicates and κ ∈ N

a number of data values. A signature Λ is a pair (Γ, κ). So that is, we exclude Σ from
the signature, as we think that Γ and κ are more important. Furthermore, Γ and κ will be
parameters to the later defined satisfiability problem, whereas we want that Σ is an input.
The reason for this choice is that to classify structures, Γ and κ are more important than
Σ. Indeed, relationships between pairs of elements are more important than the labelling of
a single element as it is the most significant parameter for the decidability and complexity
of the satisfiability problem. Another reason is to be able to refer to a class of structures
without specifying a set of unary predicates. Yet it is required to specify Σ if we want to
talk about an instance of a signature. A (Σ,Λ)-structure is a tuple

A = (A, (PA
σ )σ∈Σ, (R

A
γ )γ∈Γ, f

A
1 , . . . , f

A
κ )

where A is a non-empty finite set, PA
σ ⊆ A for each σ, RA

γ ⊆ A×A for each γ and fAi s are
mappings A → N called data functions assigning a data value to each element. We call a
pair (a, i) ∈ A× {1, . . . , κ} a data location and it stores the data value fAi (a). For X ⊆ A,
we let ValA(X) = {fAi (a) | a ∈ X, i ∈ {1, . . . , κ}}. When A is clear from the context, we

17
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can omit it and simply write Pσ, Rγ and fi instead of PA
σ , RA

γ and fAi . For Λ = (Γ, κ),
we denote by Str(Σ; Λ) the set of (Σ,Λ)-structures (or structures over Σ and Γ with κ data
values). Among Γ, we ask for the symbol < to always be interpreted as a linear order over
A.

2.1.2 Adding Interpretations

When defining structures, some information might be superfluous. For example, consider
the two binary symbols < and +1, and ask +1 to always be interpreted as the successor of
< (recall that < is a linear order). The class of structures Str(Σ; ({<}, κ)) and Str(Σ; ({<
,+1}, κ)) are equivalent in a very simple way: from any structure in Str(Σ; ({<}, κ)), there
is exactly one possibility to interpret +1 and from any structure in Str(Σ; ({<,+1}, κ)) it
suffices to forget the interpretation of +1. We thus make the choice to define structures in
a minimal way: that is, we prefer Str(Σ; ({<}, κ)) over Str(Σ; ({<,+1}, κ)). Yet, we will
sometimes want to have access to the relation +1 and it is not always definable in the logic
(e.g. with two-variable first order logic defined later). Our solution is to be able to interpret
the relation +1 when needed.

We introduce the symbols +1, +∼1, i∼j and ∼, for each of them we describe on which
structures they can be interpreted and what is the interpretation then:

+1 is the successor of <. It can be interpreted on any structure A interpreting < (we recall
that < has to be a linear order on A) and then the interpretation of +1 is defined as
RA

+1 = {(a, b) ∈ A× A | a < b and there is no c ∈ A such that a < c and c < b}. We
will write y = x+ 1 instead of +1(x, y).

Example 2.1.1. If A = ({a, b, c, d}, R<) ∈ Str(∅; {<}) such that a < b < c < d on A,
we have RA

+1 = {(a, b), (b, c), (c, d)}. �

+∼1 is the class successor . It can be interpreted on any structure A interpreting < and with
κ = 1. Then the interpretation of +∼1 is defined as RA

+∼1
= {(a, b) ∈ A × A | a < b

and f(a) = f(b) and there is no c ∈ A such that a < c and c < b and f(a) = f(c)}.
We will write y = x+∼1 instead of +∼1(x, y). See section 2.3.3 for more content on the
class successor.

i∼j to compare data values for 1 ≤ i, j ≤ κ. It can be interpreted when κ > 0. The
interpretation of i∼j is defined as RA

i∼j
= {(a, b) ∈ A × A | fi(a) = fj(b)}. We will

write x i∼j y instead of i∼j(x, y). Theses symbols will be used later in the logic to
test the equality of data values. If κ = 1 we may write ∼ for 1∼1. For convenience
we define the sets Aκ, Iκ and Sκ of symbols as

Aκ = {i∼j | 1 ≤ i, j ≤ κ}, (2.1.2)

Iκ = {i∼j | 1 ≤ i ≤ j ≤ κ}, (2.1.3)

Sκ = {i∼i | 1 ≤ i ≤ κ}. (2.1.4)

The set Aκ allows us to test the equality of any data values and the set Sκ allows us
to test the equality of data values with the same position (A stands for All, I stands
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for Increasing and S stands for Same). They are the most employed binary symbols
in this work.

2.1.3 Logics

Let V = {x, y, . . .} be a countably infinite set of variables. Let R be a set of binary symbols
taken among Γ, Aκ and the additional relations +1 and +∼1. That is, R ⊆ Γ∪Aκ∪{+1,+∼1}.
The set FOΛ[Σ;R] of first order formulas interpreted over (Σ,Λ)-structures is inductively
given by the grammar

ϕ ::= σ(x) | γ(x, y) | x = y | ϕ ∨ ϕ | ¬ϕ | ∃x.ϕ,

where x and y range over V, σ ranges over Σ, and γ ranges over R. We use standard
abbreviations such as ∧ for conjunction and → for implication. For certain symbols
γ ∈ R, we write γ(x, y) in a more natural way: x < y instead of <(x, y) and y = x + 1

instead of +1(x, y) and y = x+∼1 instead of +∼1(x, y) and x i∼j y instead of i∼j(x, y). Given
a formula ϕ, we define its set of free variables FV (ϕ) inductively by

FV (σ(x)) = {x} FV (ϕ ∨ ϕ′) = FV (ϕ) ∪ FV (ϕ′)

FV (γ(x, y)) = {x, y} FV (¬ϕ) = FV (ϕ)

FV (x = y) = {x, y} FV (∃x.ϕ) = FV (ϕ) \ {x}

We write ϕ(x1, . . . , xk) to indicate that the free variables of ϕ are among x1, . . . , xk. More-
over, we call ϕ a sentence if it does not contain free variables, i.e. FV (ϕ) = ∅.

For A = (A, (Pσ)σ∈Σ, (Rγ)γ∈Γ, f1, . . . , fκ) ∈ Str(Σ; Λ) and a formula ϕ ∈ FOΛ[Σ;R], the
satisfaction relation A |=I ϕ is defined with respect to an interpretation function I : V → A.
The purpose of I is to assign an interpretation to every (free) variable of ϕ so that ϕ can
be assigned a truth value. For x ∈ V and a ∈ A, the interpretation function I[x/a] maps x
to a and coincides with I on all other variables. We then define:

A |=I σ(x) if I(x) ∈ Pσ
A |=I γ(x, y) if (I(x), I(y)) ∈ Rγ
A |=I x = y if I(x) = I(y)

A |=I ϕ1 ∨ ϕ2 if A |=I ϕ1 or A |=I ϕ2

A |=I ¬ϕ if A 6|=I ϕ

A |=I ∃x.ϕ if there is a ∈ A s.t. A |=I[x/a] ϕ

In particular, for a sentence ϕ (without free variables), we write A |= ϕ if there exists an
interpretation function I such that A |=I ϕ.

For a structure A, a formula ϕ(x1, . . . , xk) and a1, . . . , ak ∈ A, we write A |= ϕ(a1, . . . ak)

if there exists an interpretation function I such that A |=I[x1/a1]...[xk/ak] ϕ. In the case of
the atomic formulas x i∼j y, we can write a1 i∼A

j a2 instead of A |= a1 i∼j a2

We recall the definition of N as N∪{∞}. Given k ∈ N, we define k-variable first order
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logic FOkΛ[Σ;R] as the fragment consisting of ϕ ∈ FOΛ[Σ;R] such that in each sub formula
ϕ′ of ϕ, the number of free variable of ϕ′ is at most k. Up to renaming variables, it is
equivalent to ask for ϕ to be written with up to k different variables. Note that with
k =∞, we have FO∞Λ [Σ;R] = FOΛ[Σ;R].

2.1.4 The Satisfiability Problem

We are now able to introduce the satisfiability problem, which is the central problem we
will focus on. It is parametrised by a class of structures and a logic. Let L denote a
generic class of first-order formulas, e.g. FO or FOk. In particular, when L = FO, we
have LΛ[Σ;R] = FOΛ[Σ;R]. We recall that R is a set of binary symbols. The problem
Λ-Sat(L;R) for Λ, L and R is defined as follows :

Λ-Sat(L;R)

Input: Finite set Σ; sentence ϕ ∈ LΛ[Σ;R].

Question: Is there A ∈ Str(Σ; Λ) such that A |= ϕ ?

2.2 Physical Training: Recurring Techniques

In this section, we expose a proof schema which often arises when considering satisfiability
problems. The schema splits in two, first how to show that a problem is feasible and then
how to show that one cannot do better. So in the first subsection we expose the techniques
for upper bounds: the small model property and Ehrenfeucht-Fraïssé games and in the
second subsection expose the technique for lower bounds: the tilling problems. In both
subsections we will illustrate this by analysing the satisfiability problem for multisets.

2.2.1 For Upper Bounds: Small Model Property and Ehrenfeucht-
Fraïssé Games

This subsection will focus on directly proving that a logic is decidable. To this end, one
idea is that given a formula, to enumerate all the structures while checking if one of them
satisfies the formula. This procedure works if the formula is satisfiable, but will never
terminate if the formula is not. To remedy this issue, the key idea is to find a way to
restrain the search space and this is achieved thanks to the small model property . So first
we introduce the small model property and show how it induces decidability. Then, we
introduce Ehrenfeucht-Fraïssé games and show how it can help to establish a small model
property. Finally we practice on multisets and in order to use what we have learned.

The Small Model Properties Put simply, the small model property is about the max-
imal size needed to satisfy a formula. Here is a formal formulation of it.

Definition 2.2.1 (Small model property). Let L be a class of FO formulas, Λ a signature,
R a set a binary symbols and f : N → N. We say that the logic LΛ[−;R] has the small
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model property of size f when for all set Σ and sentence ϕ ∈ LΛ[Σ;R], if ϕ is satisfiable,
then ϕ has a model of size at most O(f(|ϕ|)).

We shall not see right now how one can obtain a small model property but rather its
utility for decidability. We show that a small model property always entails a decidability
result, as stated in the following Lemma:

Lemma 2.2.2. If the logic LΛ[−;R] has a small model property of size f then the problem
Λ-Sat(L;R) belongs to NTime(n · (c · f(n))

n
) for some constant c.

Corollary 2.2.3. Using notations of the lemma 2.2.2, if we have f(n) = O(n2n) then the
problem Λ-Sat(L;R) belongs to NExp.

Before proving the lemma, we have to state a proposition on model checking.

Proposition 2.2.4 ([37, Proposition 6.6]). Given Σ, a sentence ϕ ∈ LΛ[Σ;R] and a struc-
ture A ∈ Str(Σ; Λ), deciding if A |= ϕ can be done in time O(|ϕ| · |A||ϕ|) .

We are now ready to prove Lemma 2.2.2.

Proof of Lemma 2.2.2: Let c be the constant hidden behind the big O of the assumption
of the small model property. The procedure is simple and as follow: Given ϕ, we non-
deterministically choose A ∈ Str(Σ; Λ) of size less than c · f(|ϕ|) and then accept ϕ if
A |= ϕ. First, thanks to lemma 2.2.4, the procedure have the claimed complexity. Second,
we have to show that the procedure is correct. It is the case since by assumption, we have
a small model property, which implies that if ϕ is satisfiable, then ϕ has a model of size
at most c · f(|ϕ|), so there is an accepting run. On the other hand, if ϕ is not satisfiable,
then even more so ϕ doesn’t have a model of size at most c · f(|ϕ|), so there is no accepting
run.

We have seen that small model property gives us decidability for satisfiability problems.
We will now see how to obtain small model property. We want from a formula ϕ and a
model A of it, to exhibit a new structure B of reasonable size which also satisfies ϕ. As
the formula ϕ is general, we will in fact prove something more general. That the structures
A and B are undistinguishable by a subset of formula to which ϕ belongs. And as A is a
model of ϕ, it therefore follows that B is also a model of ϕ.

Ehrenfeucht-Fraïssé Games This presentation is highly inspired by [37]. We now define
Ehrenfeucht-Fraïssé games. It takes three parameters, two structures on the same signature
and alphabet A and B and an integer q which specify the number of rounds. We denote
this game EFq(A,B). There are two players, namely the Spoiler and the Duplicator . The
game consists of q rounds constituted of:

1. The Spoiler picks a structure (A or B).

2. The Spoiler makes a move by picking an element of that structure: either a ∈ A or
b ∈ B.
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3. The Duplicator responds by picking an element in the other structure.

At the end, we have two tuples (a1, . . . , aq) and (b1, . . . , bq). As we define a game, we
need to define winning positions. In this situation, we say that the tuples (a1, . . . , aq) and
(b1, . . . , bq) defines a partial isomorphism between A and B if the three following conditions
hold:

• For any 1 ≤ i, j ≤ q, we have ai = aj iff bi = bj .

• For any 1 ≤ i ≤ q and σ ∈ Σ, we have ai ∈ PA
σ iff bi ∈ PB

σ .

• For any 1 ≤ i, j ≤ q and γ ∈ R, we have (ai, aj) ∈ RA
γ iff (bi, bj) ∈ RB

γ .

In other words the substructures of A generated by {a1, . . . , aq} and B generated by
{b1, . . . , bq} are isomorphic through the function sending ai to bi. We say that Duplicator
has won the game EFq(A,B) if the tuples (a1, . . . , aq) and (b1, . . . , bq) is a partial isomor-
phism between A and B. We say that the Duplicator has an q-round winning strategy in the
Ehrenfeucht-Fraïssé game on A and B if the Duplicator can play in a way that guarantees
a winning position after q-rounds, no matter how the Spoiler plays. If the Duplicator has
a q-round winning strategy, we write A 
q B.

We now define an another binary relation on structures, denoted ≡q. If we see a formula
ϕ as a tree, its quantifier height counts the maximum number of quantifier we see while
going through a branch of ϕ. It is denoted qh(ϕ) and defined inductively on ϕ as follow:

qh(σ(x)) = 0 qh(ϕ ∨ ϕ′) = max(qh(ϕ), qh(ϕ′))

qh(γ(x, y)) = 0 qh(¬ϕ) = qh(ϕ)

qh(x = y) = 0 qh(∃x.ϕ) = 1 + qh(ϕ)

Let A,B ∈ Str(Σ; Λ) be two structures. We say that A andB agree on formulas of quantifier
height at most q if for any sentence ϕ ∈ FOΛ[Σ;R] with qh(ϕ) ≤ q we have A |= ϕ iffB |= ϕ.
We write it A ≡q B.

We introduce now the Ehrenfeucht-Fraïssé Theorem which show how Ehrenfeucht-
Fraïssé-games characterize precisely the expressiveness of first order logic. A proof can
be found in [37].

Theorem 2.2.5 (Ehrenfeucht-Fraïssé [37])

Let A,B ∈ Str(Σ; Λ) be two structures and q an integer. We have:

A 
q B iff A ≡q B.

Practice on Multisets We now apply the theory developed earlier in this subsection
to the multisets. It is the simplest case one can consider in our framework. We choose
this application to showcase the technique. We introduce the signature MS = (∅, 0) which
represents the multisets. A multiset A ∈ Str(Σ;MS) is a tuple (A, (Pσ)σ∈Σ) where A is a
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finite set and the Pσs are subsets of A. That is, a set of element with labelling and without
any relations between the elements.

In order to show the decidability of FO over multisets, we aim at a small model property
stated hereinafter:

Lemma 2.2.6. Let ϕ ∈ FOMS[Σ; ∅]. If ϕ is satisfiable, then ϕ has a model of size at most
qh(ϕ) · 2|Σ|.

In order to prove the small model property, we want to find Ehrenfeucht-Fraïssé-games
in which the Duplicator has a winning strategy. To this end, we introduce the relation ∼=q

on structures which will imply the relation 
q. For U ⊆ Σ subset of unary predicates, we
define the subset EU (A) of A as {a ∈ A | for all σ ∈ Σ, a ∈ Pσ iff σ ∈ U} and then we
define #U (A) as the cardinal |EU (A)|. Let ∼=q be the binary relation on Str(Σ;MS) defined
as A ∼=q B if for all U ⊆ Σ, either #U (A) = #U (B) or #U (A) ≥ q and #U (B) ≥ q.

The next lemma describes a sufficient condition for the Duplicator to have a winning
strategy:

Lemma 2.2.7. For any structures A,B ∈ Str(Σ; Λ) and integer q, we have:

A ∼=q B implies A 
q B

The Lemma is in fact an equivalence but for our purpose an implication suffices. For
that matter, on other signature than MS, it is unusual to be able to characterize 
q, i.e.
it is impossible to pin down exactly when the Duplicator have a winning strategy.

Proof of Lemma 2.2.7: Assume that A ∼=q B, we want to show that the Duplicator has a
winning strategy. Its strategy is simply to maintain a partial isomorphism at every turn.
By symmetry on A and B, the strategy is possible if for any k < q, (a1, . . . , ak) ∈ A and
(b1, . . . , bk) ∈ B in partial isomorphism, and for any a ∈ A, there is a b ∈ B such that
(a1, . . . , ak, a) and (b1, . . . , bk, b) are in partial isomorphism. If there is a i0 ≤ k such that
ai0 = a, Duplicator takes b = bi0 and it’s easy to check that (a1, . . . , ak, a) and (b1, . . . , bk, b)

are in partial isomorphism. So we now assume that a /∈ {a1, . . . , ak}. Let U ⊆ Σ defined
with U = {σ ∈ Σ | a ∈ PA

σ }. Let denote by α the cardinality of EU (A) ∩ {a1, . . . , ak} and
by β the cardinality of EU (B) ∩ {b1, . . . , bk}. By assumptions, we have that α = β ≤ k

and α < #U (A) and we want #U (B) > β. Since A ∼=q B, we do a disjunction on whether
#U (A) < q or not. If #U (A) < q, we have #U (B) = #U (A) > α = β. If #U (A) ≥ q, we
have #U (B) ≥ q > k ≥ β. In both cases, we have #U (B) > β so we can pick for b any
element of EU (B) \ {b1, . . . , bk} which is nonempty.

Proof of Lemma 2.2.6: Let ϕ ∈ FOMS[Σ; ∅] satisfiable. Let q = qh(ϕ) and A = (A, (Pσ)σ∈Σ)

be a model of ϕ. We will construct B = (B, (P ′σ)σ∈Σ) ∈ Str(Σ;MS) a model a ϕ with
|B| ≤ q · 2|Σ|. For all U ⊆ Σ, we define BU ⊆ EU (A) as:

BU :=

{
EU (A) if #U (A) < q

A subset of EU (A) of cardinality q if #U (A) ≥ q.
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Then we define B as:

B :=
⋃
U⊆Σ

BU

P ′σ := Pσ ∩B

By construction of B, we have A ∼=q B. By Lemma 2.2.7 we have A 
q B, that is Dupli-
cator has a winning strategy for the game EFq(A,B). And as q = qh(ϕ) by Ehrenfeucht-
Fraïssé Theorem 2.2.5, we have that A and B are undistinguishable by ϕ, so B |= ϕ. Lastly
the cardinality of B is indeed less than q · 2|Σ|.

Theorem 2.2.8

The problems MS-Sat(FO; ∅) is in NExp.

Proof: We want to apply Lemma 2.2.2 with f(n) = n2n. So we want to show that FO over
multisets has the small model property of size f . Let ϕ ∈ FOMS[Σ; ∅] be a satisfiable formula.
We can assume that |Σ| ≤ |ϕ| since there are at most |ϕ| unary predicates appearing in ϕ.
Thanks to Lemma 2.2.6, let A ∈ Str(Σ;MS) with |A| ≤ qh(ϕ) · 2|Σ|. We have that :

|A| ≤ qh(ϕ) · 2|Σ| ≤ |ϕ|2|ϕ| = f(|ϕ|).

So we can apply Lemma 2.2.2 which gives us that MS-Sat(FO; ∅) is in NExp.

2.2.2 For Lower Bounds: Domino Tilings

To analyse satisfiability problems, the tiling problem is a crucial tool for proving lower
bounds. By lower bounds we are referring to nondeterministic-time or space complexity
lower bounds, as well as undecidability results. The tiling problem is fundamental for three
reasons. Firstly, it is closely related to the halting problem of Turing machines. The idea
of the reduction from Turing machine to tiling is simple; although the proof is technical.
Secondly, it is simple to state and needs no prerequisites. Indeed, the tiling problem is easily
comprehensible even for a layperson. Lastly, it is a cornerstone to prove a large amount
of lower bounds on satisfiability problems. For example, the original paper from Cook [13]
on the Cook–Levin Theorem cites tiling problems. Furthermore, it factors usual proof and
achieves to hide all the technicalities of encoding a Turing machine.

On the previous subsection 2.2.1 we described a way to obtain upper bounds through
small model property. It may seems that those upper bounds on complexity obtained are
sub-optimal, but this is not the case: a corresponding lower bound is very oftenly observed.
This is due to the fact that a proof of an optimal small model property frequently yields
a lower bound on the logic. This is done using tiling problems, which will be exposed
in this subsection. But this implication is not automatic and requires a bit of ingenuity.
However, in the next section 2.3, it is the case for all catalogued logics. To the best of
my knowledge the only counterexample is LTL, where its satisfiability problem is PSpace-
complete whereas it satisfies only an exponential ultimately periodic model property (an
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equivalent of small model property for LTL) which only gives an NExp upper bound. But
LTL is out of scope of this work since its models are infinite.

The outline of this subsection is to first define the tiling problems, then as an example
we use them to prove a NExp lower bound and finally we expose some techniques which
help to prove undecidability results.

Tiling problems A domino system D is a triple (D,H, V ) where D is a finite set of
dominoes and H,V ⊆ D×D are two binary relations1. For m,n ∈ N, let Gm,n denotes the
standard grid on an m × n torus, i.e., Gm,n = (Gm,n, Hm,n, Vm,n) where Hm,n and Vm,n
are two binary relations defined as follows:

Gm,n = Zmodm× Zmodn,

Hm,n = {((i, j), (i′, j)) | i′ − i ≡ 1 mod m},
Vm,n = {((i, j), (i, j′)) | j′ − j ≡ 1 mod n}.

When m = n we can write Gm = (Gm, Hm, Vm) instead of Gm,n = (Gm,n, Hm,n, Vm,n). Let
H and V be two binary predicates and let BB be the signature

BB = ({H,V}, 0).

Notice that both domino systems and the standard grids can be seen as (∅,BB)-structures.
We call elements of the collection Str(∅;BB) bi-binary structures. For two bi-binary struc-
tures G = (G,H, V ) and G′ = (G′, H ′, V ′), we say that G is homomorphically embeddable
into G′ if there is a morphism π : G → G′, i.e., a mapping π such that, for all a, a′ ∈ G, we
have (a, a′) ∈ H ⇒ (π(a), π(a′)) ∈ H ′ and (a, a′) ∈ V ⇒ (π(a), π(a′)) ∈ V ′. For instance,
Gk·m is homomorphically embeddable into Gm through reduction mod m. For a domino
system D, a periodic tiling is a morphism π : Gm,n → D for some m,n and we say that D
admits a periodic tiling if there exists a periodic tiling for D. We define the size of a tiling
π : Gm,n → D as the pair (m,n). Tilings of size (m,m) are said to be square.

From the notion of tiling, we define three decision problems, the first two depending
on a function f : N → N. The first one Bounded-Tiling(f) asks if a domino system
can tile a square grid of some given size, the second one Corridor-Tiling(f) asks if a
domino system can tile a grid with one dimension fixed and the other one unbounded and
the last one Unbounded-Tiling asks if a domino system admits a periodic tiling. The
first one captures any non-deterministic time complexity classes, the second one any space
complexity classes and the last one is undecidable.

Bounded-Tiling(f)

Input: A domino system D and an integer n encoded in unary.

Question: Does D admit a periodic tiling of size (f(n), f(n))?

1This definition of a domino system does not match the intuitive definition with colours. For a proof of
the equivalence, see the book [12].
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We allow ourselfs to directly write the expression f(n) instead of f . For instance we can
write Bounded-Tiling(n) instead of Bounded-Tiling(n 7→ n).

Proposition 2.2.9 ([52, 12]). The problem Bounded-Tiling(f) is NTime(f)-complete.

For instance, the problem Bounded-Tiling(n) is NP-complete, whereas the prob-
lem Bounded-Tiling(2n) is NExp-complete, and the problem Bounded-Tiling(22n

) is
N2Exp-complete. Defining G : N→ N as:

G(n) 7−→

{
2 if n = 0,

2G(n−1) else,

the problem Bounded-Tiling(G) is Tower-complete.

Corridor-Tiling(f)

Input: A domino system D and an integer n encoded in unary.

Question: Does D admit a periodic tiling of size (f(n),m), for some m?

Proposition 2.2.10 ([52]). The problem Corridor-Tiling(f) is Space(f)-complete.

For instance, the problem Corridor-Tiling(n) is PSpace-complete, whereas the prob-
lem Corridor-Tiling(2n) is ExpSpace-complete, and the problem Bounded-Tiling(22n

)

is 2ExpSpace-complete.

Unbounded-Tiling

Input: A domino system D.
Question: Does D admit a square periodic tiling?

Proposition 2.2.11 ([52, 12]). The problem Unbounded-Tiling is undecidable.

Practice on Satisfiability on Multisets We now apply the theory developed earlier
in this subsection to the multisets,as for the previous subsection 2.2.1 on upper bounds
techniques. We recall that the signature of multiset is MS = (∅, 0). We recall too that a
multiset A ∈ Str(Σ;MS) is a tuple (A, (Pσ)σ∈Σ) where A is a finite set and the Pσs are
subsets of A.

We rely on the problem Bounded-Tiling(2n) in order to get our first lower bound
result:

Theorem 2.2.12

The problem MS-Sat(FO; ∅) is NExp-hard.

Before proving Theorem 2.2.12, we now show that the small model property shown in
Lemma 2.2.6 is optimal. While this step in not required, it is interesting for two reasons.
First because parts of the proof will be reused for proving Theorem 2.2.12 and make the
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whole proof easier to understand. Second because it is a pattern that arises almost every-
where. The pattern is that a lower bound on the small model property implies a lower bound
on the complexity of the satisfiability problem associated. It is more a heuristic rather than
a formal proof which contrasts with the discussion on upper bounds in Subsection 2.2.1.

The following Proposition tells us that for FO over multisets, we cannot get better than
an exponential small model property.

Proposition 2.2.13. There are sequences (Σn)n of unary predicates and (ϕn)n of formulas
in FOMS[Σn; ∅] such that the size of ϕn is growing polynomially while the smallest model of
ϕn grows exponentially.

Proof: Let Σn = {c0, c1, . . . , cn−1} be a set of n unary predicates and c denote the sequence
of cis. We will see the elements of Σn as bits and then any element of a structure interpreting
them will represent an integer from 0 to 2n − 1. We use the convention that c0 represents
the bit of least weight. With this, we build a formula ϕc,nzero(x) ∈ FOMS[Σn; ∅] with one free
variable asking that the element represents 0 and a second formula ϕc,nsucc(x, y) ∈ FOMS[Σn; ∅]
with two free variables asking that the integer represented by y is the successor of the integer
represented by x modulo 2n (successor of 2n − 1 being 0). Finally we define ϕn by asking
for the existence of an element representing 0 and that every element has a successor.

ϕc,nzero(x) =

n−1∧
i=0

¬ci(x),

ϕc,nsucc(x, y) =

n−1∨
i=0

( i−1∧
j=0

(
cj(x) ∧ ¬cj(y)

)
∧ ¬ci(x) ∧ ci(y)

∧
n−1∧
j=i+1

(
cj(x) ↔ cj(y)

))

∨
i−1∧
j=0

(
cj(x) ∧ ¬cj(y)

)
Finally, we set ϕn as:

ϕn = ∃x.ϕc,nzero(x) ∧ ∀x.∃y.ϕc,nsucc(x, y).

It easy to see that if A ∈ Str(Σn; ∅) satisfies ϕn, then for any 0 ≤ k < 2n there is an element
in A representing k, so A has size at least 2n. To conclude, it suffices to notice that ϕn is
of quadratic size.

Proof of Theorem 2.2.12: We reuse the notation of the proof of Proposition 2.2.13. Let
D = (D,H, V ) be a domino system and let n be an integer. Let Σ′n = {u0, u1, . . . , un−1,

v0, v1, . . . , vn−1} and u, v representing respectively the sequences of uis and vis. We will
build a formula ϕD,n ∈ FOMS[Σ′n∪D; ∅] and then show that D admits a tiling of size (2n, 2n)
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iff the formula ϕD,n is satisfiable. Let ϕngrid be

ϕngrid = ∃x.
(
ϕu,nzero(x) ∧ ϕv,nzero(x)

)
∧ ∀x.

(
∃y.ϕu,nsucc(x, y) ∧ ∃y.ϕv,nsucc(x, y)

)
ϕD,ncor = ∀x.

∨
d∈D

(
d(x) ∧

∧
d′∈D
d′ 6=d

¬d′(x)

)

∧ ∀x.∀y.
(
ϕu,nsucc(x, y) →

∨
(d,d′)∈H

d(x) ∧ d′(y)

)

∧ ∀x.∀y.
(
ϕv,nsucc(x, y) →

∨
(d,d′)∈V

d(x) ∧ d′(y)

)
.

finally we set ϕD,n as :
ϕD,n = ϕngrid ∧ ϕD,ncor .

Let assume that D admits a tiling π : G2n → D of size (2n, 2n). We will define Pσ ⊆ G2n

for each σ ∈ Σ′n ∪ D such that the structure A := (G2n , (Pσ)σ∈Σ′n∪D) satisfies ϕD,n. We
identify G2n with {0, . . . , 2n − 1} × {0, . . . , 2n − 1}. We will see the element of u (resp. v)
as bits and then use them to represent the first coordinate i (resp. second coordinate j).
So for any k ∈ {0, . . . , 2n − 1}, we set Puk

such that (i, j) ∈ Puk
if the kth bit of binary

expansion of i is 1. Similarly, we set Pvk such that (i, j) ∈ Puk
if the kth bit of binary

expansion of j is 1. For d ∈ D, we define Pd as :

Pd = {a ∈ G2n | π(a) = d}.

The structure A indeed satisfies ϕngrid because for any (i, j) ∈ {0, . . . , 2n − 1}×{0, . . . , 2n−1}
there is an element a ∈ G2n such that the interpretations of the predicates us (resp. vs)
on a represent i (resp. j), namely a = (i, j). Because π is a morphism G2n → D, we have
A |= ϕD,ncor . Put together, we have A |= ϕD,n.

Conversely, let us assume that ϕD,n is satisfiable. We want to build a tiling π : G2n → D
of size (2n, 2n) of the domino system D. Let A = (A, (Pσ)σ∈Σ′n∪D) ∈ Str(MS; Σ′n∪D) which
satisfies ϕD,n. We define a map g : A → G2n which associates to any a ∈ A, the unique
pair (i, j) ∈ {0, . . . , 2n − 1} × {0, . . . , 2n − 1} such that the number represented by the
interpretation of the us (resp. vs) on a is i (resp j). Because A |= ϕngrid , the map g is
surjective (and note that g might not be injective). As A |= ϕD,ncor , for any b ∈ G2n we
finally define π(b) by first taking a ∈ A such that g(a) = b and setting π(b) to be the only
d ∈ D such that d holds on a. Then π is indeed a morphism because A |= ϕD,ncor .

By carefully examining the proof of Theorem 2.2.12, one can observe that it proves also
the the NExp-hardness of FO2 over multisets.
Theorem 2.2.14

The problem MS-Sat(FO2; ∅) is NExp-hard.
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Tools for Undecidability We now introduce tools to help us build reductions from
the Unbounded-Tiling problem to satisfiability problems in order to prove that some of
them are undecidable. It is highly inspired from [42]. We first use some specific bi-binary
structures, which we call grid-like and which are easier to manipulate in our context to
encode domino systems. A bi-binary structure G = (A,H, V ) is said to be grid-like if for
some m, the grid Gm is homomorphically embeddable into G. Consider the two following
FO formulas over bi-binary structures:

ϕprogress = ∀x.(∃y.Hxy ∧ ∃y.Vxy),

ϕcomplete = ∀x.∀y.∀x′.∀y′.((Hxy ∧ Vxx′ ∧ Vyy′)→ Hx′y′).

We illustrate the two formulas in Figure 2.1.

x

y

y x y

x′ y′

H H

H

V V V

ϕprog ϕcomp

Figure 2.1: Illustration of the formulas ϕprogress and ϕcomplete . Plain lines mean universal
quantification and dashed lines mean existential quantification.

The following lemma, stated and proved in [42], shows that these formulas suffice to
characterize grid-like structures:

Lemma 2.2.15 ([42] Grid-like criterion). Let G = (A,H, V ) be a bi-binary structure. If G
satisfies ϕprogress and ϕcomplete , then G is grid-like.

Given a closed formula ϕ ∈ FOΛ[Σ;R], we defineM(ϕ) the class of models of ϕ as:

M(ϕ) = {A ∈ Str(Σ; Λ) | A |= ϕ}.

Furthermore given A = (A, (Pσ)σ, (Rγ)γ , (fi)i) ∈ Str(Σ; Λ) and ϕ1(x, y) ∈ FOΛ[Σ;R] with
two free variables, we define the binary relation [[ϕ1]]A on A as:

[[ϕ1]]A = {(a, b) ∈ A×A | A |= ϕ1(a, b)}.

Thus, given another formula ϕ2(x, y) ∈ FOΛ[Σ;R] with two free variables, (A, [[ϕ1]]A, [[ϕ2]]A)

is a bi-binary structure. We define the family of bi-binary structures F(ϕ,ϕ1, ϕ2) as:

F(ϕ,ϕ1, ϕ2) = {(A, [[ϕ1]]A, [[ϕ2]]A) | A ∈M(ϕ)}.

Let F be a family of bi-binary structure, we say that F is a family of grid-like structures
if all structures in F are grid-like. We say that F is a rich family if for any m, there is a k
such that Gk·m ∈ F .
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Lemma 2.2.16 ([42]). Let L be a generic class of first-order formulas containing FO2. Let
ϕH(x, y), ϕV (x, y), ϕ ∈ LΛ[Σ;R] with ϕ a sentence. If F(ϕ,ϕH , ϕV ) is a rich family of
grid-like structures, then the problem Λ-Sat(L;R) is undecidable.

Proof: We start by describing the outline of the proof. First, for any domino system D =

(D,H, V ), we build a sentence ϕD ∈ LΛ[Σ ∪D;R]. Then we show that D admits a square
periodic tiling if and only if ϕD is satisfiable. Thus from the undecidability of the problem
Unbounded-Tiling (Proposition 2.2.11), the lemma is proven.

Let D = (D,H, V ) be a domino system. In order to encode the notion of tiling in logic,
we see elements of D as unary predicates. Let us build the sentence ϕD ∈ LΛ[Σ ∪ D;R].
We already have the formula ϕ which ensures that a structure is grid-like. From this, we
now define ϕDcor which ensures the placement of the tiles is correct:

ϕDcor =∀x.
∨
d∈D

(
d(x) ∧

∧
d′∈D
d′ 6=d

¬d′(x)

)

∧ ∀x.∀y.
(
ϕH(x, y) →

∨
(d,d′)∈H

d(x) ∧ d′(y)

)

∧ ∀x.∀y.
(
ϕV (x, y) →

∨
(d,d′)∈V

d(x) ∧ d′(y)

)
.

One can notice that the formula ϕDcor is similar to the formula ϕD,ncor from the proof of
Theorem 2.2.12. Finally, we define

ϕD = ϕ ∧ ϕDcor .

Let F denotes the family F(ϕ,ϕ1, ϕ2).
Let assume that D admits periodic tiling π : Gm → D. By assumption, as the family

F is rich, there is a k such that Gk·m ∈ F . By definition of F , let A ∈ M(ϕ) be such
that (A, [[ϕH ]]A, [[ϕV ]]A) = Gk·m. We now define Â ∈ Str(Σ ∪ D; Λ) as an extension of A
with interpretation of unary symbols from D such that Â |= ϕDcor . As the carrier set of A
is Gk·m, we can for any d ∈ D set P Â

d = {(i, j) ∈ Zmod km × Zmod km | π((i mod m, j

mod m)) = d}. We indeed have Â |= ϕDcor and as A ∈M(ϕ), we have Â |= ϕ. Put together,
we have Â |= ϕD.

Conversely, let assume that ϕD is satisfiable. Let A be a model of ϕD, then by definition
of ϕD, the structure A satisfies ϕ. By assumption, as the elements of F are grid-like, we
have that (A, [[ϕH ]]A, [[ϕV ]]A) is grid like. It means that there is a morphism π : Gm →
(A, [[ϕH ]]A, [[ϕV ]]A). As A satisfies ϕDcor , we can define a function ρ : A → D which takes
a ∈ A and associates with the unique d ∈ D such that a ∈ Pd. Thanks to ϕDcor , we know
that ρ is an morphism from (A, [[ϕH ]]A, [[ϕV ]]A) to D. Composing the morphisms π and ρ
into π ◦ ρ, we get a tiling for D.

We now apply Lemma 2.2.16 freshly proven in order to obtain our first undecidability
result: satisfiability of first order logic with two binary relations is undecidable. In this
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case, the proof is very simple. The reason is that all the tedious work is done in the proof
of Proposition 2.2.11 where one must reduce from Turing machine in some way or another.
The simplicity of the proof indicates that the both the tilings problem and Lemma 2.2.16
are well suited to prove undecidability of satisfiability problems.
Theorem 2.2.17

The problem BB-Sat(FO; {H,V}) is undecidable.

Proof: We apply Lemma 2.2.16. Take:

ϕH(x, y) = H(x, y),

ϕV (x, y) = V(x, y),

ϕ = ϕprogress ∧ ϕcomplete .

We have to show that F(ϕ,ϕH , ϕV ) is rich and that every structure in it is grid-like. We
can notice that F(ϕ,ϕH , ϕV ) = M(ϕ) and as for any m, we have Gm |= ϕ, the family F
is indeed rich. Then by definition, any A ∈ F(ϕ,ϕH , ϕV ) satisfies ϕ thus by the grid-like
criterion Lemma 2.2.15, A is grid-like. As the assumptions of Lemma 2.2.16 are checked,
the problem BB-Sat(FO; {H,V}) is undecidable.

2.3 The Safari Trip in Data Logics

In this section we will look at various logics on various structures. While some combinations
have been studied for a long time and are well known, we will revisit each of them in the
light of the satisfiability problems.

2.3.1 Words

The signature of words is W = ({<}, 0). If we instantiate the definition of structures of Sec-
tion 2.1.1, a word A ∈ Str(Σ;W) is a tuple (A, (Pσ)σ∈Σ, R<) where A is a finite set, Pσ ⊆ A
for each σ ∈ Σ and R< ⊆ A×A with the additional requirement that R< must be a linear or-
der on A. In this setting, an element carries a set of unary predicates from Σ. While our def-
inition of a word is similar to that of the field of model checking, it contrasts with the defini-
tion of automata theory where one often use a set of letters A and exactly one letter holds on

p q p
q ∅q q

Figure 2.2: A word.

each position. We can go to the automata’s formalism by taking
A = 2Σ, the powerset of Σ. This difference does not change what
can be expressed in the logic nor whether a satisfiability problem is
decidable or not but this difference can change the complexity up to
an exponential factor in some situations.

Example 2.3.1. Figure 2.2 depicts a word with Σ = {p, q}, A = {a0, a1, a2, a3, a4, a5},
PA
p = {a0, a2}, PA

q = {a1, a2, a3, a5} and < interpreted from the indices that is (ai, aj) ∈ R<
iff i < j. The elements from left to right go from the smallest to the largest according to <
and for each element only the set of predicates holding on it is depicted. �
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On any word A = (A, (Pσ)σ∈Σ, R<) ∈ Str(Σ;W), the binary symbol +1 can be inter-
preted as the successor of <. Its interpretation R+1 is defined as:

R+1 = {(a, b) ∈ A×A | a < b and there is no c ∈ A such that a < c and c < b}.

We will write y = x+ 1 instead of +1(x, y). The relation +1 can be represented in FO with
<. More precisely, we can define a formula ϕ+1(x, y) ∈ FOW[Σ; {<}] by

ϕ+1(x, y) = x < y ∧ ¬∃z. (x < z ∧ z < y).

Then our formula ϕ+1(x, y) satisfies that for any structure A and two elements a, b in it, we
have A |= b = a+ 1 iff A |= ϕ+1(a, b). We observe that ϕ+1 uses only three variables. This
implies that for any k ∈ N with k ≥ 3, the class of formulas FOkW[Σ; {<}] is as expressive
as FOkW[Σ; {<,+1}], and the translation from the latter to the former is polynomial. Thus
for each k ≥ 3, the problems W-Sat(FOk; {<}) and W-Sat(FOk; {<,+1}) are of the same
nature and complexity. However, things change in the case of FO2, as exposed later in this
subsection.

We now analyse the problem W-Sat(FO; {<}). Finite state automata are strictly more
expressive than FO on words, but under substructure closure (i.e. allowing some unary
predicates to be forgotten), they are equally expressive. For an introduction to this topic,
see [49]. This gives a decision procedure for W-Sat(FO;<): given a formula ϕ, construct
an automaton A equivalent to ϕ. Then ϕ is satifiable iff the language defined by A is
nonempty. Since there is a potential blowup in the size of the automata, this gives us
a Tower upper bound for the problem W-Sat(FO;<). It turns out that this bound
is optimal: The first work showing the Tower hardness is Stockmeyer’s thesis [46], he
first showed from scratch that checking the emptiness of a star-free regular expression is
Tower-hard and then constructed a reduction from the emptiness of a star-free regular
expression to W-Sat(FO;<). Then, in [43], Reinhardt gave a direct proof of Tower-
hardness by skipping the intermediate step and constructing from scratch a formula such
that the smallest model is of size at least tower. We define the non-elementary function
G : N→ N as

G(n) 7−→

{
2 if n = 0,

2G(n−1) else.

to help us talk about the class Tower.

Theorem 2.3.2 ([46, 43, 49])

The problem W-Sat(FO;<) is Tower-complete.

The usual proof that W-Sat(FO;<) is in Tower is based on a reduction to the emptiness
of finite state automata and can be found in [49]. The reduction is inductive on the formula:
it translates the negation of a formula into the complementation of the corresponding au-
tomaton and the existential quantification as projection. Then translating an alternation of
quantifiers leads to an iteration of the powerset construction and leads to a tower blow-up.
It turns out that in order to decide the satisfiability, this blow-up is unavoidable. We will
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devote some time proving hardness, as it is less often shown and may be compared to other
proofs of hardness presented in this manuscript. Like many hardness proofs of satisfiability,
a lower bound on the small model property is demonstrated using counters which is then
used to reduce a tiling problem or the halting problem of Turing machine to it. This proof
is noteworthy as it utilises counters in a recursive manner. Generally, in order to demon-
strate NExp-hardness, it is necessary to be able to count up to 2n, as seen in the proof
of Theorem 2.3.9. To demonstrate the N2Exp-hardness, the ability to count up to 22n

is
required, as demonstrated in the proof of Theorem 2.3.25. In contrast, in order to show

Tower-hardness, counting up to G(n) = 22···
22

is necessary. Counting up to 2n is not too
hard, since it takes n bits to write any number smaller than 2n in binary, Therefore we use
n unary predicates to do it. Then counting up to 22n

is slightly harder as we have to use n
unary predicate to count up to 2n, and then we use those numbers as positions for digits

to count up to 22n

. Finally, to count up to 22···
22

, we repeat this technique n times.

Proposition 2.3.3. There exists a sequence of formulas in FO over words of size growing
polynomially such that their smallest model grows non-elementary (i.e. is a Ω(G)).

Part of a proof of Proposition 2.3.3: In this proof, a word will be such that at any position,
exactly one unary predicate holds. We first recursively build a sequence of set of words
growing in Tower using the notion of counter. On the first step (and base case), we have
two symbols 0 and 1: we can count from 0 to 1. Then on the second step, we use the two
numbers of the first step to number digits which enable us to count in binary 00, 10, 01, 11

(least significant digit first). In order to be able to encode this in FO, we have to annotate
the position of a digit with a number, so the sentence become

0001, 1001, 0011, 1011.

We can iterate one more time to get the third step: we use the four numbers to number
digits again, so we can count the numbers 0000, 1000, 0100, . . . , 0111, 1111, so 222

= 16

numbers in total. And again we annotate the position of a digit with a number of the
previous step. So we will write

00001

01001

00011

01011

,

10001

01001

00011

01011

,

00001

11001

00011

01011

,

. . .

00001

11001

10011

11011

,

10001

11001

10011

11011

.

We now have an intuition on how the recursion in done to be able to count up to tower.
Finally, in order order to encode this in words; we flatten the tree of exponents, we index
each 0 or 1 with their height before the flattening and we add delimiters $ at the beginning
of each number which are indexed by the height of the number too. So the symbols 0 and 1
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of the first step become 01 and 11 and we can count from $101 to $111. Next, on the second
step we have the numbers:

$202$10102$111,

$212$10102$111,

$202$10112$111,

$212$10112$111.

On the third step, we get the numbers:

$303$202$10102$11103$212$10102$11103$202$10112$11103$212$10112$111,

$313$202$10102$11103$212$10102$11103$202$10112$11103$212$10112$111,

$303$202$10102$11113$212$10102$11103$202$10112$11103$212$10112$111,

. . .

$303$202$10102$11113$212$10102$11113$202$10112$11113$212$10112$111,

$313$202$10102$11113$212$10102$11113$202$10112$11113$212$10112$111.

We now define formally how to count up to any step. Take the alphabets

Σk = {$k, 0k, 1k}

for 1 ≤ k ≤ n and define
Σ<k =

⋃
1≤i<k

Σi,

Σ>k =
⋃

k<i≤n

Σi.

We recall that the non-elementary function G : N∗ → N is defined as

G(n) 7−→

{
2 if n = 0,

2G(n−1) else.

For k and 1 ≤ i < G(k) we define the word ck,i ∈ Σ≤k starting with

c1,0 = $101 and c1,1 = $111,

and then
c2,0 = $202c1,002c1,1 and c2,1 = $212c1,002c1,1,

c2,2 = $202c1,012c1,1 and c2,3 = $212c1,012c1,1.

We continue to define ck,i by induction on k ∈ {2, . . . , n}. For any i with 0 ≤ i < G(k),
we write it in binary as x0x1 . . . xG(k−1)−1 on the symbols 0k and 1k (x0 being the least
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significant bit) and we can set ck,i with:

ck,i = $kx0ck−1,0x1ck−1,1 . . . xG(k−1)−1ck−1,G(k−1)−1.

In other words, ck,i is the concatenation of $k and the sequence (xjck−1,j)0≤j<G(k−1). We
claim that for each k the language

Lk = (Σ∗>kck,0Σ∗>kck,1Σ∗>k . . .Σ
∗
>kck,G(k)−1Σ∗>k)+Σ∗>k

is definable with an FOW[Σ≤k;<] formula of size polynomial in n while the smallest word
in that language being of size at least G(k). The proof of the definability is in [43].

We look now at FO with a restricted number of variable. We can ask the question of
the expressiveness first. On signature W, the logic FO3 is as expressive as FO. It is proved
in [28] using Ehrenfeucht-Fraïssé games and then in [22], extending the result in presence
of interval preserving binary relations and the proof build an explicit translation from FO

to FO3.

Theorem 2.3.4 ([28, 22])

FO3
W[Σ;<] is as expressive as FOW[Σ;<].

However expressiveness do not not tell anything directly. Upon examining the translation
from star-free regular expressions to FO sentences over words from [46], it becomes apparent
that the resulting formulas have at most three variables, which gives us:

Theorem 2.3.5 ([46])

The problem W-Sat(FO3;<) is Tower-Complete.

Proof: As FO over words is already in Tower, we solely have to prove the hardness.
We use the fact that checking emptiness for star-free regular expression is Tower-

complete [46]. A star-free regular expression over Σ is defined by the grammar E ::= a |
E + E | E · E | cE where a ∈ Σ. The definition of the language represented by a regular
expression is as usual, especially at any position of any word in them, there is exactly
one unary predicate holding on it. From a star-free regular expression E we inductively
associate a formula ϕE(x, y) in FO3

W[Σ;<]. The intended meaning of ϕE(x, y) is that a
word w will satisfy ϕE(x, y) if the subword from x included to y excluded is in the language
defined by E. The definition of ϕE(x, y) is

ϕa(x, y) = a(x) ∧ y = x+ 1 for a ∈ Σ

ϕE+E′(x, y) = ϕE(x, y) ∨ ϕE′(x, y)

ϕE·E′(x, y) = ∃z.x ≤ z ∧ z ≤ y ∧ ϕE(x, z) ∧ ϕE′(z, y)

ϕcE(x, y) = ¬ϕE(x, y)

We can notice that as ϕE(x, y) always has at most three free variables, it is indeed part of
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FO3. The final transformation associates E with:(
∃xy.FST(x) ∧ LST(y) ∧ ϕE(x, y)

)
∧ ∀x.

∨
σ∈Σ

(
σ(x) ∧

∧
σ′∈Σ
σ′ 6=σ

¬σ′(x)
)
,

where FST(x) = ¬∃z.z < x and LST(y) = ¬∃z.y < z. The regular expression E and its
translation both define the same language and as checking emptiness for star-free regular
expression is Tower-hard, this implies that the satisfiability for FO3 over words is Tower-
hard.

Remark 2.3.6. With the transformation of the proof above, we can deduce that over words,
FO3 is as expressive as FO. Indeed, let ϕ ∈ FOW[Σ;<]. It is known that there exists a
star-free regular expression E equivalent to ϕ. Then by applying the transformation of the
proof above to E, we obtain a formula in FO3

W[Σ;<] equivalent to ϕ. �

We look at the logic FOW[Σ; {+1}]. The problem W-Sat(FO; {+1}) is decidable since
FOW[Σ; {+1}] is contained in FOW[Σ; {<,+1}], which we know to be decidable. But this
does not enable us to pin down the complexity as the former logic is strictly less expressive
than the latter. We solely know that the logic FOW[Σ; {+1}] defines “locally treshold testable
languages” as described and proven in [48]. In this way, we know that the complexity of
W-Sat(FO; {+1}) is at most Tower, but it seems that its precise complexity is unknown.

On the other hand, FO2 is strictly less expressive on words than FO3 and the complexity
of the satisfiability problem of the former drops by a lot compared to the one of the latter.
Although we have to be careful because FO2

W[Σ;<] is less expressive than FO2
W[Σ;<,+1].

Theorem 2.3.7 ([19])

W-Sat(FO2;<) and W-Sat(FO2;<,+1) are NExp-complete.

Theorem 2.3.7 is proven in [19] by establishing a correspondence between FO2 over words
and a fragment of LTL and then establishing a small small model property for this fragment
of LTL. The hardness is entailed by the hardness of the satisfiability problem of FO2 over
multisets (Theorem 2.3.9).

2.3.2 Multisets

a2

a4

a1
a3

a0

q

p
p

p
q

Figure 2.3: A multiset.

The multisets, designated with the signature MS = (∅, 0), are
the simplest structures we can consider in our setting. A mul-
tiset A ∈ Str(Σ;MS) is a tuple (A, (Pσ)σ∈Σ) where A is a finite
set and the Pσs are subsets of A. That is, a set of element
with labelling and without any relations between the elements.
Any two elements of A having the same set of unary predicates
holding on them are then indistinguishable, justifying calling
them multisets.

Example 2.3.8. Figure 2.3 depicts a multiset with Σ = {p, q},
A = {a0, a1, a2, a3, a4}, Pp = {a0, a1, a3}, Pq = {a0, a4}. We
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depict an element by a dot and we placed below it all the predicates holding on it. �

Yet the satisfiability problem for FO on MS is already NExp-complete. Restricting the
logic is of no effect to tame the complexity as the satisfiability problem of FO2 on multisets
remains NExp-hard.

Theorem 2.3.9 ([12, 19])

The problems MS-Sat(FO; ∅) and MS-Sat(FO2; ∅) are NExp-complete.

We already prove this theorem in the previous section as Theorems 2.2.8 and 2.2.14.
For external references, the proof of decidability can be found in [12] at Chapter 6.2.1.

while the proof of hardness is described in [19]. Both their proofs are similar to ours, but
ours are more detailed.

A Normal Form Furthermore than being satisfiable, FO on multisets actually has a
useful normal form. Let ϕ(x1, . . . , xn, y) ∈ FOMS[Σ; ∅] and k ≥ 1 be a natural number. We
use ∃≥ky.ϕ(x1, . . . , xn, y) as an abbreviation for:

∃y1 . . . ∃yk.
∧

1≤i<j≤k

¬(yi = yj) ∧
∧

1≤i≤k

ϕ(x1, . . . , xn, yi).

Thus, ∃≥ky.ϕ says that there are at least k distinct elements y that verify ϕ. We call a
formula of the form ∃≥ky.ϕ a threshold formula. We also use ∃=ky.ϕ as an abbreviation for
∃≥ky.ϕ ∧ ¬∃≥k+1y.ϕ.

When R = ∅, the out-degree of every element is 0 so that, over this particular signature,
we deal with structures of bounded degree. The following lemma will turn out to be
useful. It is due to Hanf’s locality theorem [27, 37] for structures of bounded degree (cf. [9,
Theorem 2.4]).

Lemma 2.3.10. Every formula ϕ from FOMS[Σ; ∅] is effectively equivalent to a Boolean
combination of formulas of the form σ(x) and x = y with σ ∈ Σ, x, y ∈ FV (ϕ) and threshold
formulas of the form ∃≥ky.ϕU (y) where U ⊆ Σ and ϕU (y) =

∧
σ∈U σ(y) ∧

∧
σ∈Σ\U ¬σ(y).

An interesting follow-up question to the previous lemma is to find the exact maximum
size of the translation. A quick analysis gives us a double exponential upper bound, but
then nothing is known about more precise bounds.

2.3.3 Data-Words

The κ-data-words are represented with the signature κDW = ({<}, κ) with κ > 0. When
κ = 1, we simply call them data-words and use the signature DW = ({<}, 1). Unfold-
ing the definition of structures of Section 2.1.1, a data-word A ∈ Str(Σ;DW) is a tuple
(A, (Pσ)σ∈Σ, R<, f) where A is a finite set, Pσ ⊆ A for each σ ∈ Σ, R< ⊆ A × A with the
additional requirement that R< must be a linear order on A and f is a function A → N
representing data values.
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q p
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(a) (b)

Figure 2.4: A data-word.

Example 2.3.11. Figure 2.4 (a) depicts a data word with Σ = {p, q}, A = {ai | 0 ≤ i < 8},
Pp = {a2, a4, a6, a7}, Pq = {a0, a2, a3, a7} and < is interpreted as in Example 2.3.1. Finally
the value of f is depict below an element, for example f(a0) = 5, f(a1) = 2 and f(a2) =

f(a3) = 3. �

We recall that on data-words, we can interpret the relations +∼1 called class successor
allowing us to jump from a position to the next one with the same data value. Formally,
we interpret it as:

R+∼1
= {(a, b) ∈ A×A | a < b and f(a) = f(b) and

there is no c ∈ A such that a < c and c < b and f(a) = f(c)}

Example 2.3.12. In Figure 2.4 (b) depicts the interpretation of the class successor of the
word of Figure 2.4 (a). We have RA

+∼1
= {(a0, a4), (a2, a3), (a3, a5), (a6, a7)}. �

Remark 2.3.13. Similarly to +1, the binary relation +∼1 can be redefined from < and ∼
with only three variables. That is, there is a formula ϕ+∼1

(x, y) ∈ FO3
DW[∅; {<,∼}] which

simulate +∼1. The formula is given by:

ϕ+∼1
(x, y) = x < y ∧ x ∼ y ∧ ¬∃z.(x < z ∧ z < y ∧ x ∼ z).

On the contrary, the binary relation +∼1 can not be defined with two variables, so FO2
DW[Σ;

{<,∼}] is strictly less expressive than FO2
DW[Σ; {<,∼,+∼1}]. �

In order to describe the complexity of the satisfiability of logics over data-words, we
need to introduce the Ackermannnian complexity class, denoted Ack. Vaguely defined,
the class Ack is the set of problems decidable in Ackermannnian time. For a more precise
definition, see [44] where it corresponds to the class Fω.

Let us start to tell the results on the decidability of FO over data-words. Even with one
data value and three variable, it is undecidable.

Theorem 2.3.14 ([7])

DW-Sat(FO3; {∼, <}) is undecidable.

With two data values, we start to have positive results, although the precise complexity
change whether we add +1 and +∼1 or not. In [7], the authors found a N2Exp reduction
from the problem DW-Sat(FO2; {∼, <,+1}) to the emptiness of multicounter automata,
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and a PTime one for the other way around. As Leroux in [36] shown that reachability
for Petri nets is Ack-complete, it implies that DW-Sat(FO2; {∼, <,+1}) is Ack-complete.
Then they extended this method to DW-Sat(FO2; {∼,+1,+∼1}).
Theorem 2.3.15 ([7])

DW-Sat(FO2; {∼, <,+1}) and DW-Sat(FO2; {∼,+1,+∼1}) are Ack-complete.

Still from [7], it is possible to reduce DW-Sat(FO2; {∼, <}) to W-Sat(FO2; {<}). As
the latter problem is NExp (Theorem 2.3.7), this gives us:

Theorem 2.3.16 ([7])

DW-Sat(FO2; {∼, <}) is NExp-complete.

If one allows +1 but not <, we get:

Theorem 2.3.17 ([6])

DW-Sat(FO2; {∼,+1}) is in N2Exp.

Note that we do not have a matching lower bound for the last theorem.
To end on data-words, we look on what happens when we add more data values. Sadly,

over 2-data-word and with two data values, the logic is already undecidable.

Theorem 2.3.18 ([7])

2DW-Sat(FO2; {1∼1, 2∼2, <}) and 2DW-Sat(FO2; {1∼1, 2∼2,+1,+2,+3}) are unde-
cidable.

Yet, the author of [30] managed to defined a sub logic of FO2 based on LTL (Linear-time
Temporal Logic) in order to overcome the undecidability on data-words with multiple data
values per element. We will not investigate more as LTL is outside the scope of this work
and the definition in [30] of multiple data values differs from ours.

2.3.4 Graphs

In this subsection, we investigate the case of the graphs. Although graphs are not structures
with data, FO on graphs is fundamental, as it is undecidable and many other undecidability
results stem from it. Particularly, we will use it in the next subsection about κ-data-
multisets.

The class of graphs are represented with the signature G = ({E}, 0), where E is a
binary relation. In our setting, unfolding the definition, a graph G ∈ Str(Σ;G) is a tuple
(V, (Pσ)σ∈Σ, RE) where V is a finite set, the Pσs are subsets of A and RE ⊆ V × V .
Compared to the usual terminology in computer science, G would be called an oriented
graph with self loop and labeled vertices. Furthermore the set V would be called the set
of vertices of G and for u, v ∈ V , we would say that the vertex u is connected to v if
(u, v) ∈ RE .

We first present the result of plain FO over graphs, called Trakhtenbrot’s Theorem in
honor to the mathematician who first discovered this result. It is an old result and one of
the first about finite satisfiability.
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Theorem 2.3.19 (Trakhtenbrot (1950), [50, 16, 37])

The problem G-Sat(FO; {E}) is undecidable.

The Theorem still holds with the requirement that Σ = ∅. [50] proves the result by a
reduction from recursive functions. The books [16, Theorem 7.2.1] and [37, Theorem 9.2]
have a more modern presentation and they start from the halting problem for Turing
machines but are incomplete. The proof of the book [16] is more extensive and contains the
proof that for any Γ, the problem (Γ, 0)-Sat(FO; Γ) is reducible to G-Sat(FO; {E}), which
is the first step to prove Theorem 2.3.19.

When restricting the number of variables down to three, we get:

Theorem 2.3.20 ([41])

The problem G-Sat(FO3; {E}) is undecidable.

The theorem still holds with the requirement that Σ = ∅ too and without using the equal-
ity symbol. The proof is found in [41] which is intricate and involves a lot of steps and
technicalities. However, if we solely aim at proving that G-Sat(FO3; {E}) is undecidable,
we have a shorter and easier proof thanks to our previous work on domino problems.

Proof of Theorem 2.3.20: The proof is done by applying Lemma 2.2.16 which is a tool to
create a reduction from Unbounded-Tiling. Thus, we want to find a way to encode grids
into graphs. To this end, we build a graph G2m that corresponds to the grid G2m. This
graph is depicted locally in Figure 2.5.

σ0 σ0 σ0 σ0 σ0 σ0 σ0

σ0 σ0 σ0 σ0 σ0 σ0 σ0

σ0 σ0 σ0 σ0 σ0 σ0 σ0

σ0 σ0 σ0 σ0 σ0 σ0 σ0

Figure 2.5: The local pattern of G2m.

To define G2m, we use one unary predicate σ0, which tell us on which row we are
modulo 2. We then define G2m = (V G2m , PG2mσ0

, RG2mE ) ∈ Str({σ0};G) as follows:

• V G2m = Zmod 2m× Zmod 2m,

• PG2mσ0
= {(i, j) ∈ V G2m | j ≡ 0 mod 2},
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• RG2mE = {((i, j), (i′, j)) ∈ V G2m × V G2m | i′ − i ≡ 1 mod 2m or j′ − j ≡ 1 mod 2m}.

We define the quantifier free formulas ϕH(x, y) and ϕV (x, y) from the logic FO3
G[{σ0}; {E}]

with two free variable as (⊕ denotes exclusive or):

ϕH(x, y) := E(x, y) ∧ (σ0(x) ↔ σ0(y)),

ϕV (x, y) := E(x, y) ∧ (σ0(x)⊕ σ0(y)).

These formulas allow us to make the link between the graph G2m and the grid G2m, and
we will use them later on to ensure that a graph has a shape ’similar’ to a grid.

Remark 2.3.21. We correctly define G2m, ϕH and ϕV as one can observe that the bi-binary
structure (V2m, [[ϕH ]]G2m , [[ϕV ]]G2m) is exactly G2m. �

We recall that if ϕ ∈ FO3
G[{σ0}; {E}] is a sentence, the family F(ϕ,ϕH , ϕV ) of bi-binary

structures defined as:

F(ϕ,ϕH , ϕV ) = {(V G , [[ϕ1]]A, [[ϕ2]]A) | G ∈ Str({σ0};G),G |= ϕ}.

Then to complete the proof, we aim to apply Lemma 2.2.16. To this end, we would like
to find a sentence ϕ ∈ FO3

G[{σ0}; {E}] such that the family F(ϕ,ϕH , ϕV ) is rich and that
every structure in it is grid-like. One candidate for ϕ could be the conjunction of ϕgraphs

progress

and ϕgraphs
complete ∈ FOG[{σ0}; {E}] defined as:

ϕgraphs
progress := ∀x.

(
∃y.ϕH(x, y) ∧ ∃y.ϕV (x, y)

)
,

ϕgraphs
complete := ∀x.∀y.∀x′.∀y′.

((
ϕH(x, y) ∧ ϕV (x, x′) ∧ ϕV (y, y′)

)
→ ϕH(x′, y′)

)
.

This would work excepts for the fact that the formula ϕgraphs
complete uses four variables. That’s

not an issue as we can substitute it with the equivalent formula ϕgraphs
complete.bis ∈ FO3

G[{σ0}; {E}]
defined as:

ϕgraphs
complete.bis := ∀x.∀y.

(
∃z.
(
ϕV (z, x) ∧ ∃x.

(
ϕH(z, x) ∧ ϕV (x, y)

))
→ ϕH(x, y)

)
Then we define ϕ as:

ϕ := ϕgraphs
progress ∧ ϕgraphs

complete.bis .

The formula ϕ is indeed part of FO3
G[{σ0}; {E}].

We prove now that the family F(ϕ,ϕH , ϕV ) is rich. let m be an integer. We have that
G2m |= ϕ and that the bi-binary structure (V G2m , [[ϕH ]]G2m , [[ϕV ]]G2m) is the same as the grid
G2m. So the family is indeed rich. We prove now that that every structure in the family
is grid-like. Let A be a bi-binary structure in F(ϕ,ϕH , ϕV ). Thanks to ϕ, we have that
A satisfies ϕprogress and ϕcomplete , so we can apply Lemma 2.2.15 which tells us that A is
grid-like. By application of Lemma 2.2.16, the problem G-Sat(FO; {E}) is undecidable.

If we drop the number of variables to 2, we get a positive result. In fact we still have
decidability for an arbitrary set of binary predicates Γ. It comes from the fact that the
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satisfiability problem of FO2 on any relational structure is decidable. While [26] were not
the first one to show the decidability, they were the first to pinpoint the exact complexity.

Theorem 2.3.22 ([26])

The problem G-Sat(FO2; {E}) is NExp-complete. More generally, for any Γ, the
problem (Γ, 0)-Sat(FO2; Γ) is NExp-complete.

2.3.5 Data-multisets
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Figure 2.6: A 2-data-
multiset.

The κ-data-multisets are represented by the signature κDMS =

(∅, κ) where κ > 0. A κ-data-multiset A ∈ Str(Σ;κDMS) is a
tuple (A, (Pσ)σ∈Σ, f1, f2, . . . , fκ) where A is a finite set, the
Pσs are subsets of A and f1, f2, . . . , fκ are functions A → N
representing data values. We will sometimes simply refer to a
data-multiset as a data structure.

Example 2.3.23. Figure 2.6 depicts a 2-data-set with A =

{a0, a1, a2, a3, a4}, Pp = {a0, a1, a3}, Pq = {a0, a4}. Each ele-
ment is represented by a domino with the first data value on
top and the second at the bottom. For example, f1(a0) = 2

and f2(a2) = 4. �

On κ-data-multisets, we can interpret the relations i∼j al-
lowing to compare data values and we have definedAκ = {i∼j |
1 ≤ i, j ≤ κ} and Sκ = {i∼i | 1 ≤ i ≤ κ}. We will write x i∼j y
instead of i∼j(x, y).

Example 2.3.24. For the 2-data-multiset A pictured in Figure 2.6, we have:

RA
1∼1

= {(a3, a4), (a4, a3)},
RA

2∼2
= ∅,

RA
1∼2

= {(a0, a3), (a1, a1), (a3, a0), (a4, a0)},
RA

2∼1
= {(a0, a3), (a0, a4), (a1, a1), (a3, a0)}.

�

One can notice that the relation i∼i are always interpreted as equivalence relation and
that some converse holds. It implies that FO with set of binary symbols Sκ over κDMS is
the same as FO over sets equipped with κ equivalence relations.

We shall now begin to expose the results on κ-data-multisets. We start with one data
value per element. The structures are the same as a set equipped with one equivalence
relation. Plain FO is N2Exp-complete, as well as FO3.

Theorem 2.3.25 ([40])

The problems 1DMS-Sat(FO; {∼}) and 1DMS-Sat(FO3; {∼}) are N2Exp-complete.
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The proof in [40] is interesting and kind of iterate the technique of the proof of the NExp-
completeness of FO over multisets (Theorem 2.3.9), both for the lower and upper bound.

Proof: In [40], the authors studied the satisfiability problem for Hybrid logic over Kripke
structures where the transition relation is an equivalence relation, and they showed that it
is N2Exp-complete. Furthermore in [20], it is shown that Hybrid logic can be translated
to first-order logic in polynomial time and this holds as well -for the converse translation.
Since 1-data-multisets can be interpreted as Kripke structures with one equivalence relation,
altogether this allows us to obtain the following preliminary result about the satisfiability
of 1DMS-Sat(FO; {∼}). Moreover, if we look more closely at the translation from Hybrid
logic, we can notice that the resulting formulas use only three variables, which get us the
result about the satisfiability of 1DMS-Sat(FO3; {∼}).

If we reduce the number of variable to two, we lost one level of exponential and get:

Theorem 2.3.26 ([33])

The problem 1DMS-Sat(FO2; {∼}) is NExp-complete.

Note that the previous theorem is not an implication of Theorem 2.3.22 because the relation
∼ cannot be axiomatized in FO2.

Next, we look at the case of two data values per element. The first result is that plain
FO with two equivalence relations is undecidable.

Theorem 2.3.27 ([29])

The problem 2DMS-Sat(FO;S2) is undecidable.

Theorem 2.3.27 is frequently referenced in the literature but its proof is hard to locate.
In [29], the theorem is claimed to be proven, but there are two issues. Firstly, it is proven for
the version of the satisfiability problem that allows infinite models. Secondly, the article is
written in an old formalism and the author does not give all the details which make it hard
for a present reader to follow. That is why we provide a proof here. Another advantage in
re-proving this theorem is that we are able to adapt the proof to FO3 and give what seems
to be a nonexistent result in the literature.

Proof of Theorem 2.3.27: The starting point is the problem G-Sat(FO; {E}), the satisfia-
bility of FO over graphs, known to be undecidable (cf Theorem 2.3.19).

Let us fix Σ and let s be a fresh unary predicate and Σ′ = Σ ] {s}. From a graph G =

(V, (Pσ)σ∈Σ, RE) ∈ Str(Σ;G), we associate a 2-data-multiset T (G) = (A, (P ′σ)σ, f1, f2) ∈
Str(Σ′; 2DMS). See Figure 2.7 for an example. Formally, the structure T (G) is such that:

• A = V ] (RE × {0, 1}),

• for σ ∈ Σ, P ′σ = Pσ,

• P ′s = {((u, v), 0) | (u, v) ∈ RE},
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• let ξ be an injection V → N, we then require for a ∈ A:

f1(a) =


ξ(u) if a = u ∈ V
ξ(u) if a = ((u, v), 0) ∈ RE × {0, 1}
ξ(v) if a = ((u, v), 1) ∈ RE × {0, 1},

• let ζ be an injection RE → N \ξ(V ), we then require for a ∈ A:

f2(a) =

{
ξ(v) if a = v ∈ V
ζ((u, v)) if a = ((u, v),_) ∈ RE × {0, 1}.

(a) A graph G with Σ = ∅.

s

s
s

s

s

s

(b) The 2-data-multiset T (G). Plain lines
depict 1∼1 equivalence classes and dashed
lines depict 2∼2 equivalence classes.

Figure 2.7: An example of the transformation of a graph. Each edge from G is translated
into a pair of elements, one for the start of the edge and the other for the end. The start is
labeled with the predicate s and the pair form a 2∼2-class. The 1∼1-classes are constituted
of a vertex and all the edges’ extremities touching it.

We define two formulas ϕvertex (x) and ϕedge(x, y) of FO2DMS[Σ′;S2] with respectively
one and two free variables. The formulas help us to retrieve the structure of G within T (G).
The formula ϕvertex (x) tells us if the element at x corresponds to a vertex and the formula
ϕedge(x, y) tells us if the two vertices x and y are connected in the origin graph.

ϕvertex (x) := ¬∃y.x2∼2 y ∧ x 6= y,

ϕedge(x, y) := ∃z.∃t.x1∼1 z ∧ s(z) ∧ z 2∼2 t ∧ t1∼1 y.

Formally, they satisfy:

(i) For all a ∈ A, we have a ∈ V iff A |= ϕvertex (a),

(ii) For all u, v ∈ V , we have (u, v) ∈ RE iff A |= ϕedge(u, v).



2.3. THE SAFARI TRIP IN DATA LOGICS 45

We now extend the transformation T on the logic in order to transform any formula of
FOG[Σ; {E}] into a formula of FO2DMS[Σ′;S2] by induction:

T (σ(x)) = σ(x), T (ϕ ∨ ϕ′) = T (ϕ) ∨ T (ϕ′),

T (E(x, y)) = ϕedge(x, y), T (¬ϕ) = ¬T (ϕ),

T (x = y) = x = y, T (∃x.ϕ) = ∃x.(ϕvertex (x) ∧ ϕ).

We correctly constructed T as it “pushes forward” the satisfiability:

Lemma 2.3.28. Let G ∈ Str(Σ;G) and ϕ ∈ FOG[Σ; {E}]. If G |= ϕ, then T (G) |= T (ϕ).

The Lemma is in fact an equivalence, but for our purpose, an implication suffices.

Proof: The proof is done by fixing G = (V, (Pσ)σ∈Σ, RE) ∈ Str(Σ;G) and then doing an
induction on ϕ(~x) with the following induction hypothesis: “For any interpretation function
I with values in V , we have G |= ϕ iff T (G) |= T (ϕ)”.

Previous Lemma indicates that the satisfiability of ϕ implies the satisfiability of T (ϕ).
For the the converse, we have to logically constrain the 2-data-multisets. To this end we
define ϕ1, ϕ2, ϕ3 and ϕcons elements of FO2DMS[Σ′;S2]. The formulas ϕ1 and ϕ2 constrain
the 1∼1-classes so that for every 1∼1-class there is exactly one element satisfying ϕvertex .
The formula ϕ3 constrains the 2∼2-classes so that they have at most two elements, and if
they have exactly two elements, then for exactly one of them the predicate s holds on it.
The formulas are defined by (here ⊕ stands for exclusive or):

ϕ1 := ∀x.∃y.x1∼1 y ∧ ϕvertex (y),

ϕ2 := ∀x.∀y.ϕvertex (x) ∧ ϕvertex (y) → ¬(x1∼1 y ∧ x 6= y),

ϕ3 := ∀x.∀y.(x 6= y ∧ x2∼2 y) →
((
∀z.x2∼2 z → (z = x ∨ z = y)

)
∧ (s(x)⊕ s(y))

)
,

ϕcons := ϕ1 ∧ ϕ2 ∧ ϕ3.

The formula ϕcons fits our purpose for two reasons. The first one is that the transfor-
mation of any graph satisfies ϕcons :

Lemma 2.3.29. For any G ∈ Str(Σ;G), we have T (G) |= ϕcons .

The second reason is that if a 2-data-multiset satisfies T (ϕ) ∧ ϕcons , we can build a
graph which satisfies ϕ:

Lemma 2.3.30. For any A ∈ Str(Σ′; 2DMS) and ϕ ∈ FOG[Σ; {E}] such that A |= T (ϕ) ∧
ϕcons , there is a G ∈ Str(Σ;G) such that G |= ϕ.

Proof: We will actually prove the stronger proposition: “For any A ∈ Str(Σ′; 2DMS), there
is a G ∈ Str(Σ;G) such that for any ϕ ∈ FOG[Σ; {E}] we have A |= T (ϕ) iff G |= ϕ”.

Let us assume that we have A = (A, (Pσ)σ∈Σ′ , f1, f2) such that A |= ϕcons . We build
G = (V, (P ′σ)σ∈Σ, RE) such that:
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• V = {a ∈ A | A |= ϕvertex (a)},

• for any σ ∈ Σ, P ′σ = Pσ ∩ V ,

• RE = {(u, v) ∈ V × V | A |= ϕedge(u, v)}.

To end the proof of the lemma, we do an induction on ϕ ∈ FOG[Σ; {E}] with the following
induction hypothesis: “For any interpretation function I with values in V , we have A |= T (ϕ)

iff G |= ϕ”.

Finally, by putting everything together, we are able to construct the reduction from
G-Sat(FO; {E}) to 2DMS-Sat(FO;S2). Let ϕ ∈ FOG[Σ; {E}]. We constructively build
T (ϕ) and we claim that ϕ is satisfiable iff T (ϕ) ∧ ϕcons is satisfiable. The forward direction
is a direct implication of Lemmas 2.3.28 and 2.3.29. The backward direction is equivalent
to Lemma 2.3.30.

If we restrict to three variables, the problem remains undecidable. The proof is an
adaptation of the proof of Theorem 2.3.27.
Theorem 2.3.31

2DMS-Sat(FO3;S2) is undecidable.

Proof: The proof of Theorem 2.3.27 proves this theorem too, up to two adjustments. The
first one is to start from the problem G-Sat(FO3; {E}) instead of G-Sat(FO; {E}). We
know thanks to Theorem 2.3.20 that the problem G-Sat(FO3; {E}) is undecidable. The
second adjustment is about the formula ϕedge(x, y). It uses four variables but we can reuse
x in order to use only three variables. We call the new formula ϕ′edge(x, y) ∈ FO3

2DMS[{s};S2]

and it is defined as:

ϕ′edge(x, y) := ∃z.
(
x1∼1 z ∧ s(z) ∧ ∃x.(z 2∼2x ∧ x1∼1 y)

)
.

Then all the remaining formulas use at most three variables.

However, if we restrain to the two-variable, The satisfiability problem become decidable:

Theorem 2.3.32 ([32])

The problem 2DMS-Sat(FO2;S2) is N2Exp-complete.

Proof: In [32], it is shown that the satisfiability problem of two-variable logic over arbi-
trary structures with two equivalence relations is decidable. We now do a straightforward
reduction to this problem. When R = {(1, 1), (2, 2)}, we actually deal with arbitrary fi-
nite structures A with a number of unary predicates and two equivalence relations, namely
1∼A

1 and 2∼A
2 . According to [32], two-variable first-order logic over those structures is

decidable.

If we stay with two data values but allows diagonal relations 1∼2 and 2∼1, the nature
of the satisfiability problem is unknown:
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Open Problem 2.3.33. The nature of the problem 2DMS-Sat(FO2;A2) is unknown yet.

Next, if we increase to three data values per element, the satisfiability problem become
undecidable, even with only two variables.

Theorem 2.3.34 ([33])

The problems 3DMS-Sat(FO2;S3) is undecidable.

So far, we have reviewed already existing results on logics over data-multisets. In the
next chapter, we shall introduce a new approach to circumvent the undecidability of FO over
2-data-multisets. The approach is based on a restriction of the allowed formulas, distinct
from restraining the number of variables.
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Chapter 3

The Local Fragments

From this chapter to the end of this document, we focus on first order logic on κ-data-
multisets. Their signature is κDMS and we presented them along with pre-existing re-
sults in section 2.3.5. We recall that a κ-data-multiset A ∈ Str(Σ;κDMS) is a tuple
(A, (Pσ)σ∈Σ, f1, f2, . . . , fκ) where A is a set, the Pσs are subsets of A and f1, f2, . . . , fκ
are functions A→ N representing data values. In particular, we will have R ⊆ Aκ = {i∼j |
1 ≤ i, j ≤ κ}.

Motivations A computer science oriented application of data-multisets is to model the
behavior of distributed algorithms. More precisely, we can see each element of a data
multiset as a process or a computing unit. As there is no relationship between the elements,
we therefore do not assume a particular processes architecture, but rather consider clouds
of computing units. Then we can see the data values as data that the processes exchange,
and in the case where κ = 2, we can see the first data value as an input and the second
data value as an output. We now introduce the leader election problem. In leader election,
a process gets its unique identifier as input, and it should eventually output the identifier
of a common leader. We can define the formula ϕleader ∈ FO2DMS[∅;A2] which states that
there is an element x such that for any other element y, the output of y is the input of x:

ϕleader = ∃x.∀y.x1∼2 y.

The first fundamental question that arises is whether a given specification is consistent.
This leads us to the satisfiability problem. The following negative result, encountered in
Chapter 2, calls for restrictions of the general logic (recalling that S2 = {1∼1, 2∼2}):

Theorem 2.3.27 ([29])

The problem 2DMS-Sat(FO;S2) is undecidable.

49
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3.1 Definitions

First, the view of a node a includes all elements whose distance to a is bounded by a given
radius. It is formalized using the notion of a Gaifman graph (for an introduction, see [37]).
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Figure 3.1: A 2-data-multiset (so
κ = 2).

We use here a variant that is suitable for our setting and
that we call data graph. Fix the set R. Given a κ-data-
multiset A = (A, (Pσ)σ, f1, . . . , fκ) ∈ Str(Σ;κDMS), its
data graph GR(A) is the graph with vertices being the
data locations of A, and two data locations are connected
if they either belong to the same element or they store
the same data value (and are comparable with R). For-
mally, we define GR(A) = (VGR(A),EGR(A)) with set of
vertices

VGR(A) = A× {1, . . . , κ}

and set of edges

EGR(A) = {((a, i), (b, j)) ∈ VGR(A) ×VGR(A) | a = b, or i∼j ∈ R and a i∼j b}.

When R = Aκ we can omit it and write G(A) for GR(A). Note that when R 6= Aκ the data
graph might be oriented. Examples of data graphs are depicted in Figure 3.2.

We define the distance dA
R((a, i), (b, j)) ∈ N between two elements (a, i) and (b, j) from

A× {1, . . . , κ} as the length of the shortest directed path from (a, i) to (b, j) in GR(A). In
fact, as the graph is directed, the distance function might not be symmetric. For a ∈ A
and r ∈ N representing a radius, the r-ball around a is the set

BA
r,R(a) = {(b, j) ∈ VGR(A) | dA

R((a, i), (b, j)) ≤ r for some i ∈ {1, . . . , κ}}.

This ball contains the data locations of A that can be reached from some data location of
a through a path of length at most r.

Let fnew : A× {1, . . . , κ} → N \ValA(A) be an injective mapping. The r-view of a in A
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(a) With R =
{1∼1, 2∼2, 1∼2, 2∼1}.
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(b) With R =
{1∼1, 2∼2, 1∼2}.
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(c) With R = {1∼1, 2∼2}.

Figure 3.2: Different data graphs associated to the example in Figure 3.1, depending on
the set of binary symbols R considered. Unidirectional edges are dashed.
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with exterior is the structure A|r,ext
a,R = (A, (Pσ)σ, f

′
1, . . . , f

′
κ) ∈ Str(Σ;κDMS). Its universe

is the same as the one of A, and the unary predicates stay the same and its data functions
are

f ′i(b) =

{
fi(b) if (b, i) ∈ BA

r,R(a),

fnew((b, i)) otherwise.

Example of views with exterior are depicted in Figure 3.3. Additionally, The r-view of a
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(b) r = 2
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(c) r = 3

Figure 3.3: Some wiews with exterior around a0 with R = {1∼1, 2∼2, 1∼2, 2∼1} and for
various radiuses r of the structure depicted in Figure 3.1. Modified data values are in red.

in A without exterior is the structure A|r,int
a,R = (A′′, (P ′′σ )σ, f

′′
1 , . . . , f

′′
κ ) ∈ Str(Σ;κDMS). Its

universe is
A′′ = {b ∈ A | (b, i) ∈ BA

r,R(a) for some i ∈ {1, . . . , κ}}.

Moreover, P ′′σ is the restriction of Pσ to A′′ and f ′′i is the restriction of f ′i to A′′. Example
of views without exterior are depicted in Figures 3.4 and 3.5.
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(c) r = 3

Figure 3.4: Some wiews without exterior around a0 with R = {1∼1, 2∼2, 1∼2, 2∼1} and for
various radiuses r of the structure depicted in Figure 3.1. Modified data values are in red.

Remark 3.1.1. The choice of the function fnew is not unique. Although this choice does
not change the interpretations of the data comparison relations i∼j , which implies that
for two different fnew, the resulting views are indiscernible with respect to FOκDMS[Σ;R].
Furthermore, Propositions 3.2.5 and 3.2.8 show this too. �
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Figure 3.5: Some wiews without exterior around a0 with R = {1∼1, 2∼2, 1∼2} and for
various radiuses r of the structure depicted in Figure 3.1. Unidirectional edges are dashed.
Modified data values are in red.

Remark 3.1.2. Alternatively in the definition of the views, instead of using fnew, we could
add a new value None. The semantic of None would be that if fi(a) = None then A 6|= a i∼j b.
Then at the data location outside the ball, we set its data value to None. This construction
leads to the same semantic, but we prefer to not use it as it adds a distinctive new data
value. �

We are now ready to present the local fragments of first order logic over κ-data-multisets.
The logic uses a new modality called the local modality 〈〈ψ〉〉r,℘x which serves to constrain
data values comparisons. The idea of this new modality is to allow ψ to only have access
to the data locations at distance less or equal than r of x. The modality is interpreted
using the views previously defined. As views are available in two sorts –with or without
exterior–, the local fragments are available in two sorts too. We use the parameter ℘ which
takes value in the set {ext, int}. The local fragment is denoted by r-LF℘κ [Σ;R] and is given
by the grammar

ϕ ::= 〈〈ψ〉〉r,℘x | x = y | ∃x.ϕ | ϕ ∨ ϕ | ¬ϕ

where ψ is a formula from FOκDMS[Σ;R] with (at most) one free variable x. For A ∈
Str(Σ;κDMS) and an interpretation function I, we set the truth value of the local modality
as

A |=I 〈〈ψ〉〉r,℘x iff A|r,℘I(x),R |=I ψ.

The semantic of the local modality depends on the value of R but we omit it because
most of the time R is fixed and obvious. But if we want to specify it, we will put R as
index. When ℘ = ext, the notation r-LFext

κ [Σ;R] denotes the local fragment with exterior
and when ℘ = int, the notation r-LFint

κ [Σ;R] denotes the local fragment without exterior.
Note that in the notation of the local fragment r-LF℘κ [Σ;R], we write κ for the signature
instead of κDMS. We allow ourself to do this because the local fragment only applies to
κ-data-multisets and in order to lighten the notations.

Example 3.1.3 (Some local formulas). Let A be the structure depicted in Figure 3.1. Let
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ψ1(x) be the formula:

ψ1(x) := ∃y.∃z.∃t.
(
x1∼1 y ∧ y 2∼1 z ∧ z 2∼2 t ∧ t1∼2x

∧ x 6= y ∧ x 6= z ∧ x 6= t ∧ y 6= z ∧ y 6= t ∧ z 6= t
)
.

We have A |= ∃x.〈〈ψ1〉〉3,int
x,A2

while A 6|= ∃x.〈〈ψ1〉〉2,int
x,A2

and A 6|= ∃x.〈〈ψ1〉〉3,int
x,I2 .

We now define ψ2(x) = ∀y.
∨

i∼j∈R x i∼j y. For any 2-data-multiset B, we have B |=
∀x.〈〈ψ2〉〉1,int

x,R while we have A 6|= ∀x.〈〈ψ2〉〉1,ext
x,R �

We introduce the existential fragment of r-LF℘κ [Σ;R], which is denoted by ∃-r-LF℘κ [Σ;R]

and given by the grammar

ϕ ::= 〈〈ψ〉〉r,℘x | x = y | ¬(x = y) | ∃x.ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where ψ is a formula from FOκDMS[Σ;R] with (at most) one free variable x. The quantifier
free fragment qf-r-LF℘κ [Σ;R] is defined by the grammar

ϕ ::= 〈〈ψ〉〉r,℘x | x = y | ¬(x = y) | ϕ ∨ ϕ | ϕ ∧ ϕ.

In Chapter 5, we will study the existential fragment and establish when it is decidable.

Remark 3.1.4. Note that for both these fragments, we do not impose any restrictions on
the use of quantifiers in the formula ψ located inside the local modality 〈〈ψ〉〉r,℘x . �

3.2 Elementary facts about the local fragments

This sections exposes elementary facts on the local fragments. It is not mandatory to
read this section in order to understand the proofs of decidability of the next sections, still
it might be helpful for the reader in order to build an intuition of the local fragments.
Proposition 3.2.5 and 3.2.8 are interesting because they show that we could define the local
fragment in a purely syntactic way (even if it would be cumbersome).

In the first subsection 3.2.1 we show that the local fragment is indeed a fragment of first
order logic and then how the different fragments are included in each other. In the second
subsection 3.2.2 we study the relationship of the local fragments with the two variable frag-
ment and the guarded fragment. In the third subsection 3.2.3 we investigate and formalize
the link between the data graph and the Gaifman graph of a data-multiset.

3.2.1 Inclusions analysis

In the following subsection, we first justify the usage of the term fragment, that is that the
local fragments are included in first order logic. Then we show that when r increases, the
expressiveness increases too. Finally we study the relationship of the fragment with exterior
with the one without exterior. In Figure 3.6 is depicted the inclusions we will show. For
some inclusions, we will conjecture if it is strict or not although we can not show that an
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inclusion is strict. Indeed we lack tools in order to characterize the expressiveness of a
local fragment yet. Filling this gap could lead to interesting future works for example by
adapting the Ehrenfeucht-Fraïssé games to our context. As we do not have the tools yet to
prove that something can not be expressed in the local fragment, it will only be conjectures.

But first, we have to show that the distance function can be expressed in first order
logic.

⊆

1-LFint
κ 2-LFint

κ 3-LFint
κ

1-LFext
κ 2-LFext

κ 3-LFext
κ

⊆ ⊆

⊆ ⊆

⊆⊆ ⊆

⊆ · · ·

· · ·

FOκDMS⊆

Figure 3.6: The relationship between the different local fragments and first order logic. The
sets Σ and R are fixed and we omit them for clarity.

Internalizing the distance

We show that the distance dR((a, i), (b, j)) can be internalized in first order logic, that is
it is possible to express in first order logic that two data locations are at distance at most
r. We define a family of formulas ϕ≤ri,j,R(x, y) ∈ FOκDMS[Σ;R] which reflects that the data
locations (a, i) and (b, j) are at distance at most r. The formulas have two free variables
and are parametrized with i, j ∈ {1, . . . , κ} and r ∈ N and R. The definition is inductive
on r. Intuitively, for the definition of ϕ≤r+1

i,j,R we use the fact that two data locations (a, i)

and (b, j) are at distance at most r+ 1 iff there is a third data location (c, k) such that it is
at distance at most r from (a, i) and (b, j) is at distance at most 1 from (c, k). The formula
⊥ denotes a formula which is never satisfied, i.e. is for any structure A, we have A 6|= ⊥.

ϕ≤0
i,j,R(x, y) =

{
x = y if i = j

⊥ if i 6= j
,

ϕ≤1
i,j,R(x, y) =

{
x = y ∨ x i∼j y if i∼j ∈ R
x = y if i∼j /∈ R

,

for r ≥ 1, ϕ≤r+1
i,j,R (x, y) = ∃z.

κ∨
k=1

(
ϕ≤ri,k,R(x, z) ∧ ϕ≤1

k,j,R(z, x)
)
.

The next lemma states that the formulas ϕ≤ri,j,R(x, y) are correct.

Lemma 3.2.1. For any structure A ∈ Str(Σ;κDMS) and a, b elements of A, we have that

dA
R((a, i), (b, j)) ≤ r iff A |= ϕ≤ri,j,R(a, b).

The proof is by induction on r. As a corollary, we can internalize the r-balls. Concretely,
we can define a family of formulas ϕrBall,j,R(x, y) ∈ FOκDMS[Σ;R] which reflect that the data
location (y, j) is in the ball of radius r around x. The formulas have two free variables and
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is parametrized with j ∈ {1, . . . , κ} and r ∈ N and R. The definition of ϕrBall,j,R use the
formulas ϕ≤ri,j,R:

ϕrBall,j,R(x, y) =

κ∨
i=1

ϕ≤ri,j,R(x, y)

Corollary 3.2.2. For any structure A ∈ Str(Σ;κDMS) and a, b elements of A, we have
that

(b, j) ∈ BA
r,R(a) iff A |= ϕrBall,j,R(a, b).

The corollary directly comes out of the definition of balls and lemma 3.2.1.

The local fragment is indeed a fragment

We build a translation from r-LF℘κ [Σ;R] to FOκDMS[Σ;R] preserving the satisfaction rela-
tion. We first tackle the case where ℘ = ext and then the case where ℘ = int.

With exterior Given a formula ϕ ∈ r-LF℘κ [Σ;R], some of its subformulas will be local
modalities of the form 〈〈ψ〉〉r,ext

x . And within ψ they are data comparison atoms y j∼k z. We
transform such an atom into the formula [[y j∼k z]]rx,R, and this formula has to emulate the
data comparison under the view around x. So for the definition of [[y j∼k z]]rx,R, we have
to check that the data locations (y, j) and (z, k) are in the r-ball around x and that their
data values are the same. Although when j = k, it is also sufficient that y = z because
in a view, a data location always has the same data as itself, even outside the ball. So we
have to give two definitions whether j = k or not. When j 6= k, the formula [[y j∼k z]]rx,R is
defined by

[[y j∼k z]]rx,R = y j∼k z ∧ ϕrBall,j,R(x, y) ∧ ϕrBall,k,R(x, z),

and when j = k, the formula [[y j∼j z]]rx,R is defined by

[[y j∼j z]]rx,R =
(
y j∼j z ∧ ϕrBall,j,R(x, y) ∧ ϕrBall,j,R(x, z)

)
∨ y = z.

Next is the key lemma for the inclusion analysis, which states that we can simulate data
comparisons within a view in first order logic.

Lemma 3.2.3. For any structure A ∈ Str(Σ;κDMS) and a an elements of A and b, c

elements of A|r,℘a,R, we have that

A|r,℘a,R |= b j∼k c iff A |= [[b j∼k c]]ra,R.

Proof: Let us express the component of A and A|r,℘a,R as A = (A, (Pσ)σ, f1, . . . , fκ) and
A|r,℘a,R = (A′, (P ′σ)σ, f

′
1, . . . , f

′
κ).

Let us assume that A|r,℘a,R |= b j∼k c. We do a case analysis, the first case being
(b, j) ∈ BA

r,R(a). Then by definition of the view A|r,℘a,R, we have f ′j(b) = fj(b). By assumption
we have f ′j(b) = f ′k(c), which implies that (c, k) ∈ BA

r,R(a), because otherwise by definition of
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the view, f ′k(c) = fnew((c, k)) 6= fk(b) by assumption on fnew. So we have that f ′k(c) = fk(c).
Put together, we have fj(b) = f ′j(b) = f ′k(c) = fk(c) which is equivalent to A |= b j∼k c.
And as (b, j), (c, k) ∈ BA

r,R(a) by Corollary 3.2.2, we have that A |= ϕrBall,j,R(a, b) and
A |= ϕrBall,k,R(a, c). So A |= [[b j∼k c]]ra,R as expected. The second case is when (b, j) /∈
BA
r,R(a). Then by definition of the view, we have f ′j(b) = fnew(b) and by assumption we

have f ′j(b) = f ′k(c). Then by assumption on fnew and injectivity of fnew, we have b = c and
j = k. Thus A |= [[b j∼k c]]ra,R as expected.

For the converse, let us assume that A |= [[b j∼k c]]ra,R. From the last assumptions,

there are two possibilities, the first one being that A |= b j∼k c ∧
(
ϕrBall,j,R(a, b)

)
∧(

ϕrBall,k,R(a, c)
)
. So we have first that fj(b) = fk(c) and second by Corollary 3.2.2, it

implies that both (b, j) and (c, k) are in BA
r,R(a). Then by definition of the view, we have

that f ′j(b) = fj(b) and f ′k(c) = fk(c). Put together, we have f ′j(b) = fj(b) = fk(c) = f ′k(c)

which is equivalent to our goal A|r,℘a,R |= b j∼k c. The second possibility is that j = k and
b = c, which obviously implies that f ′j(b) = f ′k(c) and concludes.

We go back on 〈〈ψ〉〉r,℘x . Within ψ, we transform each y j∼k z into [[y j∼k z]]rx,R and we
call the resulting formula ψ′ ∈ FOκDMS[Σ;R]. The formula ψ′ is equivalent to the local
modality with exterior 〈〈ψ〉〉r,ext

x . We express it formally in the following lemma:

Lemma 3.2.4. For any structure A ∈ Str(Σ;κDMS) and any context I : V → A, we have:

A |=I 〈〈ψ〉〉r,ext
x iff A |=I ψ

′.

The proof is done by induction on ψ and thanks to Lemma 3.2.3.
We are now able to describe the translation from the local fragment with exterior.

Proposition 3.2.5. For any ϕ ∈ r-LFext
κ [Σ;R], we can build in polynomial time an equiv-

alent formula ϕ′ ∈ FOκDMS[Σ;R]. That is, for any structure A ∈ Str(Σ;κDMS) we have
A |= ϕ iff A |= ϕ′.

Proof: In ϕ, we replace each local modality 〈〈ψ〉〉r,ext
x by ψ′ as described above and it pro-

duces ϕ′. In order to show that the two formulas ϕ and ϕ′ are equivalent, we do an induction
on ϕ and use lemma 3.2.4.

Remark 3.2.6. Proposition 3.2.5 shows that the local fragment is indeed a fragment. One
can wonder if the inclusion is strict in the following sense: for any ϕ ∈ FOκDMS[Σ;R], can we
pick r and build ϕ′ ∈ r-LFext

κ [Σ;R] such that ϕ and ϕ′ are equivalent. Gaifman’s theorem
(Originally presented in [23] or can be found in book [37] as Theorem 4.22) states that every
formula of first order logic is equivalent to a local one. A direct application of the theorem
shows that the inclusion is not strict. But the translation can lead to a non-elementary
blow-up in size, see [14]. �

Without exterior We now tackle the case when ℘ = int. We will use our previous work
on the case ℘ = ext as a starting point. As we restrain the universe in the view without
exterior, we have one more step to do compared to the view with exterior: to constrain the
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quantification in ψ′. We start with ψ′ defined right before Lemma 3.2.4 and then for any
subformula ∃y.θ of it, we replace it with:

∃y.
( κ∨
i,j=1

ϕ≤ri,j,R(x, y)
)
∧ θ

and call ψ′′ ∈ FOκDMS[Σ;R] the result. The formula ψ′′ is equivalent to the local modality
without exterior 〈〈ψ〉〉r,int

x . We express it formally in the following lemma:

Lemma 3.2.7. For any structure A ∈ Str(Σ;κDMS) and any context I : V → A, we have:

A |=I 〈〈ψ〉〉r,int
x iff A |=I ψ

′′.

Proof: We only give the structure of the proof. Let us denote a = I(x) and by A′′ the
universe of A|r,int

a,R . First prove that the set A′′ is equal to {b ∈ A | A |=
∨κ
i,j=1 ϕ

≤r
i,j,R(a, b)}.

Then the lemma can be proved by an induction on ψ (with an arbitrary numbers of free
variables), with the following induction hypothesis: For any context I ′ : V → A′′, we have

A|r,int
a,R |=I′ ψ iff A |=I′ ψ

′′.

We are now able to describe the translation from the local fragment without exterior.
From now, the proof is similar to the case ℘ = ext.

Proposition 3.2.8. For any ϕ ∈ r-LFint
κ [Σ;R], we can build in polynomial time an equiv-

alent formula ϕ′ ∈ FOκDMS[Σ;R]. That is, for any structure A ∈ Str(Σ;κDMS) we have
A |= ϕ iff A |= ϕ′.

Proof: In ϕ, we replace each local modality 〈〈ψ〉〉r,int
x by ψ′′ as described above and it pro-

duces ϕ′. In order to show that the two formulas ϕ and ϕ′ are equivalent, we do an induction
on ϕ and use lemma 3.2.7.

Now that we have shown that the local fragments are indeed fragments of first order
logic, we can deduce from it the nature of the satisfiability problem with one data value, as
stated in the next Corollary.

Corollary 3.2.9. for any integer r, the two problems 1DMS-Sat(r-LFext; {∼}) and
1DMS-Sat(r-LFint; {∼}) are decidable. More precisely, they are in N2Exp.

Proof: Thanks to Propositions 3.2.5 and 3.2.8, we know that the problems can be reduced
to 1DMS-Sat(FO; {∼}). And Theorem 2.3.25 states that the latter is in N2Exp.

The monotonicity of the expressiveness

Here, we show that expressiveness increases when the radius r increases and when we go
from ℘ = int to ℘ = ext. That is, r-LF℘κ [Σ;R] is contained in r′-LF℘κ [Σ;R] for any r < r′

and r-LFint
κ [Σ;R] is contained in r-LFext

κ [Σ;R]. The techniques and proofs are similar to
the one of Propositions 3.2.5 and 3.2.8.

We first state the monotonicity of expressiveness for the local fragment with exterior.
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Proposition 3.2.10. For any r < r′ and ϕ ∈ r-LFext
κ [Σ;R], we can build in polynomial time

an equivalent formula ϕ′ ∈ r′-LFext
κ [Σ;R]. That is, for any structure A ∈ Str(Σ;κDMS) we

have A |= ϕ iff A |= ϕ′.

Proof: In ϕ, for each 〈〈ψ〉〉r,ext
x , construct ψ′ as right before Lemma 3.2.4 and then replace

the local modality with 〈〈ψ′〉〉r
′,ext
x and this yields ϕ′. Then, the proof of the Proposition

is similar to the one of Proposition 3.2.5, and the equivalent of the lemma 3.2.4 is that for
any structure A ∈ Str(Σ;κDMS) and any context I : V → A, we have:

A |=I 〈〈ψ〉〉r,ext
x iff A |=I 〈〈ψ′〉〉r

′,ext
x .

Now, we state the monotonicity of expressiveness for the local fragment without exterior.

Proposition 3.2.11. For any r < r′ and ϕ ∈ r-LFint
κ [Σ;R], we can build in polynomial

time an equivalent formula ϕ′ ∈ r′-LFint
κ [Σ;R]. That is, for any structure A ∈ Str(Σ;κDMS)

we have A |= ϕ iff A |= ϕ′.

Proof: In ϕ, for each 〈〈ψ〉〉r,int
x , construct ψ′′ as right before the Lemma 3.2.7 and then

replace the local modality 〈〈ψ〉〉r,int
x with 〈〈ψ′′〉〉r

′,int
x and this yields ϕ′. Then, the proof of

the Proposition is similar to the one of Proposition 3.2.8, and the equivalent of the lemma
3.2.7 is that for any structure A ∈ Str(Σ;κDMS) and any context I : V → A, we have:

A |=I 〈〈ψ〉〉r,int
x iff A |=I 〈〈ψ′′〉〉r

′,int
x .

Remark 3.2.12. Propositions 3.2.10 and 3.2.11 show that r-LF℘κ [Σ;R] is included in
r′-LF℘κ [Σ;R] with respect to expressiveness when r < r′. We think that the inclusion is
strict and the formula which states that for any a there is a b at distance between r+ 1 and
r′ is a witness of it. The formula is written as ∀x.〈〈∃y.ϕ≤r

′

1,1,R(x, y) ∧ ¬ϕ≤r1,1,R(x, y)〉〉r
′,℘
x . We

claim that this formula cannot be expressed in r-LF℘κ [Σ;R], even when extending the set of
unary predicates Σ. Yet for the time being we lack the tools to prove such a claim. �

And finally we state that the local fragment with exterior contains the local fragment
without exterior.

Proposition 3.2.13. For any ϕ ∈ r-LFint
κ [Σ;R], we can build in polynomial time an equiv-

alent formula ϕ′ ∈ r-LFext
κ [Σ;R]. That is, for any structure A ∈ Str(Σ;κDMS) we have

A |= ϕ iff A |= ϕ′.

Proof: In ϕ, for each 〈〈ψ〉〉r,int
x , construct ψ′′ as above and then replace the local modality

with 〈〈ψ′′〉〉r,ext
x and this yields ϕ′. Then, the proof of the Proposition is similar to the

one of Proposition 3.2.5, and the equivalent of the lemma 3.2.4 is that for any structure
A ∈ Str(Σ;κDMS) and any context I : V → A, we have:

A |=I 〈〈ψ〉〉r,int
x iff A |=I 〈〈ψ′′〉〉r,ext

x .
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3.2.2 Relationship with other logics

In this this subsection, we first show in Proposition 3.2.17 that the two-variable fragment
FO2

κDMS[Σ;R] is a fragment of 1-LFext
κ [Σ;R], up the addition of new unary predicates. Then

we define the guarded fragment FOg
κDMS[Σ;R] and show in Proposition 3.2.22 that it is a

fragment of 1-LFint
κ [Σ;R], up the addition of new unary predicates.

Relationship with the two-variables fragment

Here, we study the relationship of the local fragment with the two-variables fragment.
We show that, up to the addition of new unary predicates, FO2

κDMS[Σ;R] is included in
1-LFext

κ [Σ;R] and as a corollary the satisfiability problem of the former is reducible to the
one of the latter. To accomplish this, we use the Scott normal form which allows us to
only consider formulas of quantification depth at most two. We say that a formula of
FO2

κDMS[Σ;R] is in Scott normal form if is of the form:

∀x.∀y.ψ0(x, y) ∧
m∧
p=1

∀x.∃y.ψp(x, y) (3.2.14)

where the where ψp ∈ FO2
κDMS[Σ;R] for p ∈ {0, . . . ,m} are quantifier free (i.e. they are a

boolean combination of atomic formulas) and have their free variables among {x, y}. The
following Proposition states how every formula on two-variable is related to a formula in
Scott normal form.

Proposition 3.2.15 (Scott). For any sentence ϕ ∈ FO2
κDMS[Σ;R], we can compute in poly-

nomial time an extension of the unary predicates Σ′ ⊇ Σ and a formula ϕ′ ∈ FO2
κDMS[Σ′;R]

in Scott normal form such that ϕ is satisfiable iff ϕ′ is satisfiable.

See [24] for a proof of Proposition 3.2.15 and more details on Scott normal form.

Remark 3.2.16. In Proposition 3.2.15, the models of ϕ and ϕ′ are tightly related. If
A ∈ Str(Σ;κDMS) is a model of ϕ, there is a unique way to extend A by adding the
interpretation of every σ ∈ Σ′ \ Σ to get A′ ∈ Str(Σ′;κDMS) a model of ϕ′. Conversely,
if A′ ∈ Str(Σ′;κDMS) a model of ϕ′, then forgetting the interpretation of σ ∈ Σ′ \ Σ

yields A ∈ Str(Σ;κDMS), a model of ϕ. In fact, each predicate in Σ′ \ Σ corresponds to a
subformula with one free variable of ϕ and tells where it holds on a structure. �

We make the technical assumption that the set of binary predicate R is symmetric, that
is for any i, j ∈ {1, . . . , κ} if i∼j ∈ R then j∼i ∈ R. Recalling thatAκ = {i∼j | 1 ≤ i, j ≤ κ}
and Iκ = {i∼j | 1 ≤ i ≤ j ≤ κ}, we make this assumption because FO2

κDMS[Σ; Iκ ] is as
expressive as FO2

κDMS[Σ;Aκ] while r-LF℘κ [Σ; Iκ ] is strictly less expressive than r-LF℘κ [Σ;Aκ]

Proposition 3.2.17. If the set of binary predicate R is symmetric, for any sentence ϕ ∈
FO2

κDMS[Σ;R], we can compute in polynomial time an extension of the unary predicates
Σ′ ⊇ Σ and a formula ϕ′ ∈ 1-LFext

κDMS[Σ′;R] such that ϕ is satisfiable iff ϕ′ is satisfiable.
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Proof: From ϕ, we apply Proposition 3.2.15 to get ϕ′′ ∈ FO2
κDMS[Σ′;R] in Scott normal

form. We therefore assume that ϕ′′ has the shape described by equation (3.2.14). Then in
ϕ′′ we translate the subformula ∀y.ψ0(x, y) into 〈〈∀y.ψ0(x, y)〉〉1,ext

x and for p > 0 we translate
the subformula ∃y.ψp(x, y) into 〈〈∃y.ψp(x, y)〉〉1,ext

x to get ϕ′ ∈ 1-LFext
κ [Σ′;R]. Then to show

that ϕ′′ and ϕ′ are equivalent, the core of the proof is to show that for any structure
A ∈ Str(Σ′;κDMS) and a, b elements of it and i∼j ∈ R, we have

A |= a i∼j b iff A|1,ext
a,R |= a i∼j b.

Remark 3.2.18. Remark 3.2.16 applies to Proposition 3.2.17 too. �

As a corollary of the previous Proposition, we have the reduction of the satisfiability
problem of the two-variable fragment to the local fragment with exterior and radius one.
Theorem 3.2.19

There is a reduction from κDMS-Sat(FO2;R) to κDMS-Sat(1-LFext;R). Furthermore
the reduction is in polynomial time .

It turns out that the reciprocal of the previous Theorem is also true. The reciprocal
being that we can reduce the satisfiability of the local fragment with radius one to the
satisfiability of two variable first order logic. But this reduction is far from trivial and will
be the whole subject of chapter 4.

The previous Theorem also allows us to shows that as soon as the number of data
value is greater than 3 (i.e. κ ≥ 3), the satisfiability problem for the local fragments are
undecidable, as stated in the next Corollary. We recall that S3 = {1∼1, 2∼2, 3∼3}.

Corollary 3.2.20. The problem 3DMS-Sat(1-LFext;S3) is undecidable.

Proof: Theorem 3.2.19 gives us a reduction from the problem 3DMS-Sat(FO2;S3) to the
problem 3DMS-Sat(1-LFint;S3). And thanks to Theorem 2.3.34, we know that the former
is undecidable.

Relationship with the guarded fragment

Here, we study the relationship of the local fragment with the two-variable fragment. The
guarded fragment was originally introduced in [2]. We call FOg

κDMS[Σ;R] the guarded frag-
ment and as in our context the predicates are of arity at most two, we see it as a fragment
of two-variable first order logic FO2

κDMS[Σ;R]. Its syntax is the following:

ϕ ::= σ(x) | γ(x, y) | x = y | ϕ ∨ ϕ | ¬ϕ | ∃x.
(
γ(x, y) ∧ ϕ(x, y)

)
| ∃x.ϕ(x),

where x and y range over V, σ ranges over Σ, γ ranges overR and recalling that the notation
ϕ(x, y) means that the free variables of ϕ are among {x, y}.

We show that in a sense, FOg
κDMS[Σ;R] is included in 1-LFint

κ [Σ;R] and as a corollary
the satisfiability problem of the former is reducible to the one of the latter. To accomplish
this, we use the guarded Scott normal form which is a variation of the Scott normal form.
We say that a formula of FOg

κDMS[Σ;R] is in guarded Scott normal form if it is of the form:
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∀x.∀y.

( ∨
γ∈R

γ(x, y)
)
→ ψ0

 ∧ m∧
p=1

∀x.∃y.

( ∨
γ∈R

γ(x, y)
)
∧ ψp

 (3.2.21)

where the ψp ∈ FO2
κDMS[Σ;R] for p ∈ {0, . . . ,m} are quantifier free (i.e. they are a boolean

combination of atomic formulas) and have their free variables among {x, y}. By slightly
adapting the proof of the existence of the Scott normal form of [24], one can prove that any
formula of the guarded fragment is equivalent to a formula in guarded Scott normal form:

Proposition 3.2.22. For any sentence ϕ ∈ FOg
κDMS[Σ;R], we can compute in polynomial

time an extension of the unary predicates Σ′ ⊇ Σ and a formula ϕ′ ∈ FOg
κDMS[Σ′;R] in

guarded Scott normal form such that ϕ is satisfiable iff ϕ′ is satisfiable.

Remark 3.2.23. Remark 3.2.16 applies to Proposition 3.2.22 too. �
The next proposition and theorem state the reduction from the guarded fragment to the

local fragment without exterior.

Proposition 3.2.24. If the set of binary predicates R is symmetric, for any sentence
ϕ ∈ FOg

κDMS[Σ;R], we can compute in polynomial time an extension of the unary predicates
Σ′ ⊇ Σ and a formula ϕ′ ∈ 1-LFint

κDMS[Σ;R] such that ϕ is satisfiable iff ϕ′ is satisfiable.

Proof: From ϕ, we apply Proposition 3.2.22 to get ϕ′′ ∈ FO2
κDMS[Σ′;R] in Scott normal

form. We therefore assume that ϕ′′ has the shape describe by equation (3.2.21). Then in
ϕ′′ we transform the subformula ( ∨

γ∈R
γ(x, y)

)
→ ψ0

into
〈〈
( ∨
γ∈R

γ(x, y)
)
→ ψ0〉〉1,int

x

and for p > 0 we transform the subformula

∃y.
(
γi(x, y) ∧ ψi

)
into

〈〈∃y.
(
γi(x, y) ∧ ψi

)
〉〉1,int
x

to get ϕ′ ∈ 1-LFint
κ [Σ′;R]. Then to show that ϕ′′ and ϕ′ are equivalent, the two key step of

the proof is first to notice that for any structure A ∈ Str(Σ′;κDMS) and if a, b are elements
of A, then b is an element of A|1,int

a,R iff there is a γ ∈ R such that A |= γ(a, b). The second
step is to notice that for any element a of A and b of A|1,int

a,R we have

A |= a i∼j b iff A|1,int
a,R |= a i∼j b.

Remark 3.2.25. The remark 3.2.16 applies to the previous Proposition too. �
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As a corollary of the previous Proposition, we have the reduction of the satisfiability
problem of the guarded fragment to the local fragment without exterior and radius one.
Theorem 3.2.26

There is a reduction from κDMS-Sat(FOg ;R) to κDMS-Sat(1-LFint;R). Furthermore
the reduction is in polynomial time.

There is a usual extension of the guarded fragment, called equally the loosely guarded
fragment or the pairwise guarded fragment. It is defined in [51]. To determine its relation-
ship with the local fragments is a question less obvious than for the guarded fragment and
remains open.

3.2.3 Links with Gaifman graph

The data graph G(A) is closely related to the Gaifman graph of A. As previously said, the
notion of data graph G(A) is inspired from the notion of Gaifman graph. But their links are
stronger; we prove in this subsection formal links between the two. Succinctly, the Gaifman
graph of A is the graph with set of vertices A and two vertex are connected if one of their
data value are equal, that is set set of edges is ∪i,jRA

i∼j
, the union of the interpretations

of the data comparison relations. We then have a morphism of graph from the data graph
to the Gaifman graph which sends the data location (a, i) to its corresponding element a.
Moreover, this morphism satisfies that if a and b are connected in the Gaifman graph, then
there are i, j such that (a, i) and (b, j) are connected in the data graph. We made use
of this connection to prove Proposition 3.2.27. We then unfold some consequences of this
Proposition. Among them, Corollary 3.2.28 is crucial for the proof of decidability of the
existential fragment in section 5.

Here for the sake of simplicity, we will assume that R = Aκ, that is we can compare
the values of any data location. That is, we do note have to bother to check if a data
comparison is in R. One can easily generalise to any set R and it would not affect the aim
of this subsection. The idea of the following proposition is to characterize the existence of
a path in the data graph as the existence of a path in the Gaifman’s graph.

Proposition 3.2.27 (Characterization of balls). Let r ∈ N∗ and A = (A, (Pσ)σ, f1, . . . , fκ) ∈
Str(Σ;κDMS) and a, b ∈ A and j ∈ {1, . . . , κ}. Let p be an integer such that r = 2p− 1 if
r is odd and r = 2p otherwise.

Then the data location (b, j) is in the ball BA
r,R(a) iff there are a0 = a, a1, . . . , ap = b ∈ A

and i0, j1, i1, j2, . . . , ip−2, jp−1, ip−1, jp ∈ {1, . . . , κ} such that

a0 i0∼
A
j1 a1 i1∼

A
j2 a2 i2∼

A
j3 · · · ip−2

∼A
jp−1

ap−1 ip−1
∼A
jp ap.

If r is odd, we further ask for jp = j.

Proof: We treat at the same time the case r odd and r even.
The backward direction is obvious: by induction we have that (a0, i0) ∈ BA

0,R(a), then
that (a1, j1) ∈ BA

1,R(a) then that (a1, i1) ∈ BA
2,R(a) and then (a2, j2) ∈ BA

3,R(a) and so
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a0 = a a1 a2 a3 ap−1 ap = b

13

13

9 9

21

21

7

i0 = i

j1

i1 j2

i2

j3

i3

11

7

7

jp−1

ip−1

jp

Figure 3.7: An illustration of the characterization of Proposition 3.2.27.

on. At the end we have (ap, jp) ∈ BA
2p−1,R(a) and (ap, j) ∈ BA

2p,R(a) (note that whether r
is even or odd does not affect the truth of the last statement). If r is odd, we then have
(ap, jp) = (b, j).

For the forward direction, let us assume that (b, j) ∈ BA
r,R(a) then by definition of a

ball, it means that there is a path of length at most r in the data graph G(A) from a data
location of a to the jth data location of b. Let l denotes the minimal length of such a path.
So there are (c0, k0), . . . , (cl, kl) ∈ A × {1, . . . , κ} with c0 = a, cl = b and kl = j such that
for any 0 ≤ n < l, the data locations (cn, kn) and (cn+1, kn+1) are adjacent in G(A). We
show by induction on 0 ≤ n < l that:

(∗)

{
cn kn∼

A
kn+1

cn+1 if n is even

cn = cn+1 if n is odd

For the base case n = 0, we have to show that c0 6= c1. It is true because otherwise, we
have a = c0 = c1 and then we have a path (c1, k1) · · · (cl, kl) of length l − 1 contradicting
the minimality of l. We now treat the inductive case, so n ≥ 1.

First, let assume that n is even. We want to show that cn kn∼
A
kn+1

cn+1. We have that
n − 1 is odd and by inductive hypothesis, we have cn−1 = cn. Then cn 6= cn+1, because
otherwise cn−1 = cn = cn+1 and then the data locations (cn−1, kn−1) and (cn+1, kn+1)

are adjacent in G(A) implying we can remove (cn, kn) from the path to get the new path
(c0, k0) · · · (cn−1, kn−1)(cn+1, kn+1) · · · (cl, kl) of length l − 1 which contradicts the mini-
mality of l. But (cn, kn) and (cn+1, kn+1) are adjacent in G(A), thus cn kn∼

A
kn+1

cn+1 as
desired.

Second, let assume that n is odd. We want to show that cn = cn+1. We have that
n − 1 is even and by inductive hypothesis, we have cn−1 kn−1

∼A
kn
cn. Then we don’t have

cn kn∼
A
kn+1

cn+1, because otherwise it implies that cn−1 kn−1
∼A
kn+1

cn+1 and then the data
locations (cn−1, kn−1) and (cn+1, kn+1) are adjacent in G(A) implying we can remove (cn, kn)

from the path to get the new path (c0, k0) · · · (cn−1, kn−1)(cn+1, kn+1) · · · (cl, kl) of length
l − 1 which contradicts the minimality of l. But (cn, kn) and (cn+1, kn+1) are adjacent in
G(A), thus cn = cn+1 as desired.

We now have finished the inductive proof. We can pad the end the path with (b, j) to
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move from a path of length l to a path of length r and still have (∗) holding for it. We
remind ourselves that we have p be such that r = 2p − 1 if r is odd and r = 2p else. Now
we define the sequence of ans, ins and jns by

an = c2n for n ∈ {0, . . . , p− 1},
ap = c2n−1

in = k2n for n ∈ {0, . . . , p− 1},
jn = k2n−1 for n ∈ {1, . . . , p}.

By the property (∗) we have that

a0 i0∼
A
j1 a1 i1∼

A
j2 a2 i2∼

A
j3 · · · ip−2

∼A
jp−1

ap−1 ip−1
∼A
jp ap,

with a0 = a and ap = b. Moreover when r = 2p − 1, we have jp = k2p−1 = kr = j. This
concludes the proof.

3
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1

1
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3
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=
1

r
=

2
r
=

3
r
=
4

r =
5

r
=
6

r = 0

Figure 3.8: A 2-data-multiset and the balls around the element a for all the value of r.

Specifying Proposition 3.2.27 for r ∈ {1, 2, 3, 4} we get the following Corollary.

Corollary 3.2.28. Let r ∈ N∗ and A = (A, (Pσ)σ, f1, . . . , fκ) ∈ Str(Σ;κDMS) and a, b ∈ A
and j ∈ {1, . . . , κ}.

1. (b, j) ∈ BA
1,R(a) iff there is i ∈ {1, . . . , κ} such that a i∼A

j b.
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2. (b, j) ∈ BA
2,R(a) iff there exists i, j′ ∈ {1, . . . , κ} such that a i∼A

j′ b.

3. (b, j) ∈ BA
3,R(a) iff there exists i0, j1, i1 ∈ {1, . . . , κ} and c ∈ A such that

a i0∼
A
j1 c i1∼

A
j b.

4. (b, j) ∈ BA
4,R(a) iff there exists i0, j1, i1, j2 ∈ {1, . . . , κ} and c ∈ A such that

a i0∼
A
j1 c i1∼

A
j2 b.

The following remark establish the link between distances in the data graph and dis-
tances in the Gaifman graph.

Remark 3.2.29 (On distances). Let us consider the function from integers to integers n 7→
dn/2e, which for every p ∈ N sends both 2p−1 and 2p to p. Let A = (A, (Pσ)σ, f1, . . . , fκ) ∈
Str(Σ;κDMS) and a ∈ A and r > 0. A consequence of Proposition 3.2.27 is that the radius
r ball in the Gaifman graph of A is the same as the radius 2r ball in the data graph. �

Remark 3.2.30. Let A = (A, (Pσ)σ, f1, . . . , fκ) ∈ Str(Σ;κDMS) and a, b ∈ A . We look at
the distances of the data locations of b from a. That is the set {mini∈{1,...,κ} d

A(((a, i), (b, j)) |
j ∈ {1, . . . , κ}}. A direct consequence of the definition of the data graph is that the dif-
ference of two distances is at most one, and thus the set contains at most two values.
Proposition 3.2.27 adds that the minimum distance is always odd and if the set is a single-
ton, the only distance is odd. Furthermore, if r is even then for any j, j′ ∈ {1, . . . , κ}, we
have that (b, j) ∈ BA

r,R(a) iff (b, j′) ∈ BA
r,R(a). �
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Chapter 4

Deciding the satisfiability of the
local fragments

This chapter presents the work of [10]. It is dedicated to set the nature of the satisfiability
problems of the local fragment. We only focus on the cases with two data values because
if the number of data values is smaller or bigger, the satisfiability problems for the local
fragment become trivial relative to the existing literature (see Corollaries 3.2.9 and 3.2.20).
This chapter only talks about the local fragment without exterior as the article this chapter
come from.

The first section establish a preliminary results that will be reused in the following sec-
tion. Then the second section shows that 2DMS-Sat(1-LFint; {1∼1, 2∼2, 1∼2}) is decidable.
Finally, in the third section is dedicated to negative results, we show that the two problems
2DMS-Sat(3-LFint; {1∼1, 2∼2}) and 2DMS-Sat(2-LFint; {1∼1, 2∼2, 1∼2}) are undecidable.

From [10] there are two modifications; the first one is a slight change in the notation in
order to fit the ones of this manuscript, and the second modification is that definitions and
preliminary results have moved to Chapter 2.

4.1 Preliminaries: Extended Two-Variable Fragment

In this section, we will define the extended two-variable first-order logic and then show
that the corresponding satisfiability problem is decidable. It extends two already existing
results.

We recall that S2 = {1∼1, 2∼2}. The first result is about FO2. The two-variable
fragment FO2

2DMS[Σ;S2] contains all FO[Σ;S2] formulas that use only two variables (usually x
and y). In a two-variable formula, however, each of the two variables can be used arbitrarily
often. We restate a theorem seen in Section 2.

Theorem 2.3.32 ([32])

The problem 2DMS-Sat(FO2;S2) is N2Exp-complete.

67
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The second result is about first-order logic with only unary predicates.
Theorem 4.1.1

The problem 2DMS-Sat(FO; ∅) is NExp-complete.

Proof: As the set of binary symbols R is empty, that is R = ∅, a formula ϕ ∈ FO2DMS[Σ; ∅]
can be seen as formula about multisets without data values, that is ϕ ∈ FOMS[Σ; ∅]. And
Theorem 2.3.9 states that the problem MS-Sat(FO; ∅) is NExp-complete.

Actually, those two results can be generalized to extended two-variable first-order logic.
A formula belongs to ext-FO2

2DMS[Σ;R] if it is of the form ϕ ∧ ψ where ϕ ∈ FO2DMS[Σ; ∅]
and ψ ∈ FO2

2DMS[Σ;R]. To obtain the next result, the idea consists in first translating the
formula ϕ ∈ FO2DMS[Σ; ∅] into a two-variable formula thanks to new unary predicates.

Proposition 4.1.2. The problem 2DMS-Sat(ext-FO2;S2) is decidable.

In order to prove Proposition 4.1.2, we first show that one can reduce the first-order
part with R = ∅ to a two-variable formula:

Proposition 4.1.3. Let ϕ be an FO2DMS[Σ; ∅] sentence. Then, we can effectively construct
ϕ′ ∈ FO2

2DMS[Σ′; ∅] with Σ ⊆ Σ′ such that ϕ is satisfiable iff ϕ′ is satisfiable. Furthermore,
if a structure A satisfies ϕ, then we can add an interpretation of the predicates in Σ′ \ Σ

to A to get a model for ϕ′. Conversely, if a structure A′ satisfies ϕ′, then forgetting the
interpretation of the predicates in Σ′ \ Σ in A′ gives us a model for ϕ.

Proof: We apply Lemma 2.3.10 to ϕ and then obtain ϕ′′. As there is no free variable in
ϕ, the formula ϕ′′ is a boolean combination of formulas of the form ∃≥ky.ϕU (y) where
U ⊆ Σ. Let M be the maximal such k (if there is no threshold formula, ϕ′′ is either
true or false). We define a set of unary predicates ΛM = {ηi | 1 ≤ i ≤ M} and let
Σ′ = Σ ∪ ΛM . The following formulas will specify the meaning of the elements of ΛM .
First, let ϕsame(x, y) =

∧
σ∈Σ σ(x)↔ σ(y). With this, we define:

ϕ1
η := ∀x.

∨
i∈[1,M ]

(
ηi(x) ∧

∧
j∈[1,M ]\{i}

¬ηj(x)
)

ϕ2
η := ∀x.

∧
i∈[1,M−1]

(
ηi(x)→ ¬∃y.(x 6= y ∧ ϕsame(x, y) ∧ ηi(y))

)

ϕ3
η := ∀x.

∧
i∈[2,M ]

(
ηi(x)→ (∃y.ϕsame(x, y) ∧ ηi−1(y))

)
We then denote ϕη := ϕ1

η ∧ ϕ2
η ∧ ϕ3

η ∈ FO2
2DMS[Σ′; ∅]. Then, for a model A ∈ Str(Σ′; 2DMS)

of ϕη with carrier set A, an element a ∈ A, and an integer 1 ≤ i ≤M , we have that a ∈ Pηi
iff |{b ∈ A | for all σ ∈ Σ, a ∈ Pσ iff b ∈ Pσ}| ≥ i. Then in ϕ′′, we replace all threshold
formulas ∃≥ky.ϕU (y) with ∃y.ϕU (y) ∧ ηk(y) in order to obtain ϕ′′′ ∈ FO2

2DMS[Σ ∪ ΛM ; ∅].
Finally we take ϕ′ as ϕ′′′ ∧ ϕη.
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We are now ready to prove Proposition 4.1.2:

Proof of Proposition 4.1.2: Let ϕ ∧ ψ be a sentence such that ϕ ∈ FO2DMS[Σ; ∅] and ψ ∈
FO2

2DMS[Σ;R]. We determine Σ′ ⊇ Σ and ϕ′ in FO2
2DMS[Σ′; ∅] according to Proposition 4.1.3.

Then, by Theorem 2.3.32, it only remains to show that ϕ ∧ ψ is satisfiable iff ϕ′ ∧ ψ is
satisfiable.

Suppose there is A ∈ Str(Σ; 2DMS) such that A |= ϕ ∧ ψ. By Proposition 4.1.3, we can
add propositions from Σ′ \Σ to A to get a data structure A′ such that A′ |= ϕ′. As ψ does
not speak about propositions in Σ′ \ Σ, we have A′ |= ψ and, therefore, A′ |= ϕ′ ∧ ψ.

Conversely, let A′ ∈ Str(Σ′; 2DMS) such that A′ |= ϕ′ ∧ ψ. Then, again by Proposition
4.1.3, “forgetting” in A′ all labels in Σ′ \ Σ yields a structure A such that A |= ϕ. As we
still have A |= ψ, we conclude A |= ϕ ∧ ψ.

4.2 Decidability With One Diagonal Relation

Recalling that I2 = {1∼1, 2∼2, 1∼2} and S2 = {1∼1, 2∼2}, we will show in this sec-
tion that 2DMS-Sat(1-LFint; I2 ) is decidable. To this end, we will give a reduction to
2DMS-Sat(ext-FO2;S2). The rest of this section is devoted to this reduction.

Henceforth, we fix a finite set Σ and we let Θ range over arbitrary finite sets such that
Σ ⊆ Θ and Θ∩{eq, ed} = ∅, where eq and ed are special unary symbols that are introduced
below.

We start with some crucial notion. Suppose R′ ⊆ I2 (which will later be instantiated
by either S2 or I2 ). We define R̃′ as the set {(i, j) | i∼j ∈ R′}, then for example we have
Ĩ2 = {(1, 1), (2, 2), (1, 2)}. Consider a data structure A = (A, (Pσ)σ, f1, f2) ∈ Str(Θ; 2DMS)

with Σ ⊆ Θ. Given U ⊆ Σ and a nonempty set R ⊆ R̃′, the environment of a ∈ A is defined
as

EnvA,Σ,R′(a, U,R) =
{
b ∈ A | U = {σ ∈ Σ | b ∈ Pσ} and R = {(i, j) ∈ R̃′ | a i∼A

j b}
}
.

Thus, it contains the elements that carry exactly the labels from U (relative to Σ) and to
which a is related precisely in terms of the relations in R (relative to R′).

Example 4.2.1. Consider A ∈ Str(Σ; 2DMS) from Figure 4.1(a) where Σ = ∅. Then, the
set EnvA,Σ,I2 (a, ∅, {(1, 1), (1, 2)}) = EnvA,Σ,S2(a, ∅, {(1, 1)}) contains exactly the yellow el-
ements (with data-value pairs (1, 1)), and EnvA,Σ,I2 (a, ∅, {(1, 2)}) contains the two blue
elements (with data-value pairs (2, 1) and (3, 1)). �

Let us now go through the reduction step by step.

Step 1: Transform Binary into Unary Relations

In the first step, we get rid of the binary relations by representing them as unary ones. In
fact, in a formula 〈〈ψ〉〉1,int

x from 1-LFint
2 [Σ; I2 ], ψ only talks about elements that are directly

related to a = I(x) in terms of pairs from Ĩ2 . In fact, we can rewrite ψ into ψ′ so that all
comparisons are wrt. x, i.e., they are of the form x i∼j y. Then, a pair (i, j) ∈ Ĩ2 can be
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: {(1, 1), (2, 2), (1, 2)}

Figure 4.1: (a) A data structure over Σ = ∅. (b) Adding unary predicates for a given
element a. (c) Adding counting constraints to a. (d) A well-typed data structure from
Str({eq} ∪ C3; 2DMS).

seen as a unary predicate that holds at b iff a i∼j b. In this way, we eliminate the binary
relations and replace ψ′ with a first-order formula ψ′′ over unary predicates.

Example 4.2.2. Adding unary relations to a data structure for a given element a is illustrated
in Figure 4.1(b) (recall that Σ = ∅). �

Thanks to the unary predicates, we can now apply Lemma 2.3.10 (which was a conse-
quence of locality of first-order logic over unary symbols only). That is, to know whether
ψ′′ holds when x is interpreted as a, it is enough to know how often every unary predicate
is present in the environment of a, counted only up to some M ≥ 1. However, we will then
give up the information of whether the two data values at a coincide or not. Therefore, we
introduce a unary predicate eq, which shall label those events whose two data values coin-
cide. Accordingly, we say that A = (A, (Pσ)σ, f1, f2) ∈ Str(Θ∪{eq}; 2DMS) is eq-respecting
if, for all a ∈ A, we have a ∈ Peq iff f1(a) = f2(a).

Once we add this information to a, it is enough to know the size of EnvA,Σ,I2 (a, U,R)

for every U ⊆ Σ and nonempty R ⊆ Ĩ2 , measured up to M . To reason about theses
sizes, we introduce a unary predicate HU,R,mI for all U ⊆ Σ, nonempty sets R ⊆ Ĩ2 , and
m ∈ {1, . . . ,M} (which is interpreted as “≥m”). We also call such a predicate a counting
constraint and denote the set of all counting constraints by CM (recall that we fixed Σ and
R = I2 ). For a finite set Θ with Σ ⊆ Θ, we call A = (A, (Pσ)σ, f1, f2) ∈ Str(Θ∪CM ; 2DMS)

cc-respecting if, for all a ∈ A, we have a ∈ PHU,R,mI iff |EnvA,Σ,I2 (a, U,R)| ≥ m.
Finally, we call A ∈ Str(Θ ∪ {eq} ∪ CM ; 2DMS) well-typed if it is eq-respecting and

cc-respecting.

Example 4.2.3. In Figure 4.1(c), where we suppose M = 3 and Σ = ∅, the element a
satisfies the counting constraints H∅, {(2, 2)}, 1I, H∅, {(1, 1), (2, 2)}, 1I, H∅, {(1, 2)}, 2I, and
H∅, {(1, 1), (1, 2)}, 3I, as well as all inherited constraints for smaller constants (which we
omitted). On this figure, we write H∅, R,mI as R ≥ m. In fact, pairs from R are represented
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as black bars in the obvious way (cf. Figure 4.1(d)); moreover, for each constraint, the
corresponding elements have the same color. Finally, the data structure from Figure 4.1(d)
is well-typed, i.e., eq- and cc-respecting. Again, we omit inherited constraints. �

To summarize, we have the following reduction:

Lemma 4.2.4. For each formula ϕ ∈ 1-LFint
2 [Σ; I2 ], we can effectively compute M ∈ N

and χ ∈ FO2DMS[Σ ∪ {eq} ∪ CM ; ∅] such that ϕ is satisfiable iff χ has a well-typed model.

Proof: Consider 〈〈ψ〉〉r,int
x where ψ is a formula from FO2DMS[Σ; I2 ] with one free variable

x. Wlog., we assume that x is not quantified in ψ. We replace, in ψ, every occurence of a
formula y i∼j z with y 6= x by ∨

k∈{1,2} |
(k,i),(k,j)∈Ĩ2

x k∼i y ∧ x k∼j z .

Call the resulting formula ψ′. Replace, in ψ′, every formula x i∼j y by (i, j)(y) to obtain an
FO2DMS[Σ ∪ Ĩ2 ; ∅] formula ψ′′. Suppose A = (A, (Pσ)

σ∈Σ∪Ĩ2 , f1, f2) ∈ Str(Σ ∪ Ĩ2 ; 2DMS)

and interpretation function I such that, for all b ∈ A and (i, j) ∈ Ĩ2 , we have b ∈ P(i,j) iff
I(x) i∼j b. Then,

A|1,int
I(x),I2 |=I ψ(x) ⇐⇒ A|1,int

I(x),I2 |=I ψ
′(x) ⇐⇒ A|1,int

I(x),I2 |=I ψ
′′(x) .

Note that the first equivalence holds because in order to have access to the data value in
the data location (y, j) and (z, k) in the 1-view around x, those data must be the same and
comparable to one of x.

Then according to Lemma 2.3.10, we can effectively transform ψ′′ into an equivalent
FO2DMS[Σ ∪ Ĩ2 ; ∅] formula ψ̂′′ that is a Boolean combination of formulas of the form σ(x)

with σ ∈ Σ ∪ Ĩ2 and threshold formulas of the form ∃≥ky.ϕU (y) where U ⊆ Σ ∪ Ĩ2 and
ϕU (y) =

∧
σ∈U σ(y)∧

∧
σ∈(Σ∪Ĩ2 )\U ¬σ(y). LetM be the maximal such k (orM = 0 if there

is no threshold formula). Again, we assume that x is not quantified in ψ̂′′.
We obtain the FO2DMS[Σ ∪ {eq} ∪ CM ; ∅] formula χ from ψ̂′′ by replacing

• (1, 2)(x) by eq(x), and (1, 1)(x) and (2, 2)(x) by true,

• ∃≥ky.ϕU (y) by

{
false if U ∩ Ĩ2 = ∅
HU ∩ Σ, U ∩ Ĩ2 , kI(x) if U ∩ Ĩ2 6= ∅.

When translating a threshold formula ∃≥ky.ϕU (y), we first do a disjunction on the emptiness
of U ∩ Ĩ2 . We do so because if the intersection is empty, it means we are looking within
the 1-view around x for elements y with no shared data values with x (w.r.t I2 ). But as
we consider view without exterior, there is no such y.

We can then eliminate redundant true and false. Suppose a well-typed data structure
A = (A, (Pσ)σ, f1, f2) ∈ Str(Σ ∪ Ĩ2 ∪ {eq} ∪ CM ; 2DMS) and interpretation function I such
that, for all b ∈ A and (i, j) ∈ Ĩ2 , we have b ∈ P(i,j) iff I(x) i∼j b. Then,

A|1,int
I(x),I2 |=I ψ̂

′′(x) ⇐⇒ A|1,int
I(x),I2 |=I χ(x) .
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Moreover, for U ⊆ Σ, a nonempty set R ⊆ Ĩ2 , and k ∈ N, we have

A|1,int
I(x),I2 |=I HU,R, kI(x) ⇐⇒ A |=I HU,R, kI(x) .

We deduce that, for all A ∈ Str(Σ; 2DMS) and interpretation functions I,

A |=I 〈〈ψ〉〉1,int
x ⇐⇒ A |=I χ(x) .

This concludes the proof.

Step 2: Well-Diagonalized Structures

In CM , we still have the diagonal relation (1, 2) ∈ Ĩ2 . Our goal is to get rid of it so that
we only deal with the diagonal-free set S̃2 = {(1, 1), (2, 2)}. The idea is again to extend a
given structure A, but now we add new elements, one for each value n ∈ ValA(A), which
we tag with a unary symbol ed and whose two data values are n. Diagonal equality will be
ensured through making a detour via these ‘diagonal’ elements (hence the name ed).

Formally, when we start from some A = (A, (Pσ)σ, f1, f2) ∈ Str(Θ ∪ {eq}; 2DMS),
the data structure A + ed ∈ Str(Θ ∪ {eq, ed}; 2DMS) is defined as (A′, (P ′σ), f ′1, f

′
2) where

A′ = A ] ValA(A), f ′i(a) = fi(a) for all a ∈ A and i ∈ {1, 2}, f ′1(a) = f ′2(a) = a for all
a ∈ ValA(A), P ′σ = Pσ for all σ ∈ Θ \ {eq}, P ′ed = ValA(A), and P ′eq = Peq ∪ValA(A).

Example 4.2.5. The structure A + ed is illustrated in Figure 4.2(a), with Θ = ∅. �

(a) A + ed A

1
1

b1

1
1
ed
eq

2
2

b2

2
2
ed
eq

3
3

b3

3
3
ed
eq

4
4

b4

4
4
ed
eq

1
2

a7

1
1

a1

1
1
eq

1
1

a2

1
1
eq

1
1

a3

1
1
eq

2
2

a6

2
2
eq

3
4

a82
1

a5

3
1

a4

(b)

3
1

b1

3
1
ed
eq

1
2

b2

1
2
ed
eq

4
3

b3

4
3
ed
eq

2
4

b4

2
4
ed
eq

3
2

a7

3
1

a1

3
1
eq

3
1

a2

3
1
eq

3
1

a3

3
1
eq

1
2

a6

1
2
eq

4
4

a81
1

a5

4
1

a4

Figure 4.2: (a) Adding diagonal elements. (a)←(b) Making a data structure eq-respecting.

With this, we say thatB ∈ Str(Θ∪{eq, ed}; 2DMS) is well-diagonalized if it is of the form
A+ ed for some eq-respecting A ∈ Str(Θ∪{eq}; 2DMS). Note that then B is eq-respecting,
too.

Example 4.2.6. The data structure A+ ed from Figure 4.2(a) is well-diagonalized. The one
from Figure 4.2(b) is not well-diagonalized (in particular, it is not eq-respecting). �

We will need a way to ensure that the considered data structures are well-diagonalized.
To this end, we introduce the following sentence from FO2[Θ ∪ {eq, ed};S2]:

ξΘ
ed :=

∧
i∈{1,2}

(
∀x.∃y.(ed(y) ∧ x i∼i y) ∧

(
∀x.∀y.(ed(x) ∧ ed(y) ∧ x i∼i y)→ x = y

))
∧
(
∀x.eq(x)↔ ∃y.(ed(y) ∧ x 1∼1 y ∧ x 2∼2 y)

)
∧
(
∀x.ed(x)→

∧
σ∈Θ ¬σ(x)

)
.
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Every structure that is well-diagonalized satisfies ξΘ
ed. The converse is not true in general.

In particular, a model of ξΘ
ed is not necessarily eq-respecting. However, if a structure satisfies

a formula ϕ ∈ FO2DMS[Θ∪{eq, ed};S2], then it is possible to perform a permutation on the
first (or the second) values of its elements while preserving ϕ. This allows us to get:

Lemma 4.2.7. Let B ∈ Str(Θ ∪ {eq, ed}; 2DMS) and ϕ ∈ FO2DMS[Θ ∪ {eq, ed};S2]. If
B |= ϕ∧ξΘ

ed, then there exists an eq-respecting A ∈ Str(Θ∪{eq}; 2DMS) such that A+ed |= ϕ.

Example 4.2.8. Consider Figure 4.2 and let Θ = ∅. The data structure from Figure 4.2(b)
satisfies ξΘ

ed, though it is not well-diagonalized. Suppose it also satisfies some formula
ϕ ∈ FO2DMS[{eq, ed};S2]. By permutation of the first data values, we obtain the well-
diagonalized data structure in Figure 4.2(a). As ϕ does not talk about the diagonal relation,
satisfaction of ϕ is preserved. �

Proof of Lemma 4.2.7: Let B = (A, (Pσ), f1, f2) in Str(Θ∪{eq, ed}; 2DMS) such that B |=
ϕ ∧ ξed. We define the sets D1 = {n ∈ N | ∃b ∈ Ped.f1(b) = n} and D2 = {n ∈ N | ∃b ∈
Ped.f2(b) = n}. Since

B |=
∧

i∈{1,2}

((
∀x.∃y.ed(y) ∧ x i∼i y

)
∧
(
∀x.∀y.(ed(x) ∧ ed(y) ∧ x i∼i y)→ x = y

))
,

we deduce that |D1| = |Ped| = |D2| and furthermore the mapping π : D1 7→ D2 defined
by π(n) = m iff there exists b ∈ Ped such that f1(b) = n and f2(b) = m is a well-defined
bijection. It is well defined because there is a single element b in Ped such that f1(b) = n

and it is a bijection because for all m ∈ D2, there is a single b ∈ Ped such that f2(b) = m.
We can consequently extend π to be a permutation from N to N. We then take the model
A′ = (A, (Pσ), π ◦ f1, f2). Since ϕ ∧ ξed ∈ FO2DMS[Θ ∪ {eq, ed};S2] with S2 = {(1, 1), (2, 2)}
and since B |= ϕ ∧ ξed, we deduce that A′ |= ϕ ∧ ξed because performing a permutation on
the first data values of the elements of B does not affect the satisfaction of ϕ ∧ ξed (this
is a consequence of the fact that there is no comparison between the first values and the
second values of the elements). The satisfaction of ξed by A′ allows us to deduce that A′

is well-diagonalized. We can in fact safely remove from A′ the elements of Ped to obtain
a structure A ∈ Str(Θ ∪ {eq}; 2DMS) which is eq-respecting ( this is due to the fact that
A′ |=

(
∀x.eq(x) ↔ ∃y.(ed(y) ∧ x 1∼1 y ∧ x 2∼2 y)

)
∧
(
∀x.ed(x) →

∧
σ∈Θ ¬σ(x)

)
) and such

that A′ = A + ed .

Finally, we can inductively translate ϕ ∈ FO2DMS[Θ ∪ {eq}; ∅] into a formula [[ϕ]]+ed ∈
FO2DMS[Θ ∪ {eq, ed}; ∅] that does not take into account the extra ‘diagonal’ elements:

[[σ(x)]]+ed = σ(x) [[¬ϕ]]+ed = ¬[[ϕ]]+ed

[[x = y]]+ed = (x = y) [[∃x.ϕ]]+ed = ∃x.(¬ed(x) ∧ [[ϕ]]+ed)

[[ϕ ∨ ϕ′]]+ed = [[ϕ]]+ed ∨ [[ϕ′]]+ed

We immediately obtain:
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Lemma 4.2.9. Let A ∈ Str(Θ ∪ {eq}; 2DMS) and ϕ ∈ FO2DMS[Θ ∪ {eq}; ∅] be a sentence.
We have A |= ϕ iff A + ed |= [[ϕ]]+ed.

Step 3: Getting Rid Of the Diagonal Relation

We will now exploit well-diagonalized data structures to reason about environments relative
to I2 (= {1∼1, 2∼2, 1∼2}) in terms of environments relative to S2(= {1∼1, 2∼2}). Recall
that Θ ranges over finite sets such that Σ ⊆ Θ.

Lemma 4.2.10. Let A = (A, (Pσ)σ, f1, f2) ∈ Str(Θ ∪ {eq}; 2DMS) be eq-respecting and
B = A + ed. Moreover, let a ∈ A, U ⊆ Σ, and R ⊆ Ĩ2 be a nonempty set. We have
EnvA,Σ,I2 (a, U,R) =

EnvB,Σ,S2(a, U,S2) \ Ped if a ∈ Peq and R = Ĩ2 (1)

EnvB,Σ,S2(a, U,S2) if a /∈ Peq and R = S̃2 (2)

EnvB,Σ,S2(a, U, {(1, 1)}) ∩ (Peq \ Ped) if a /∈ Peq and R = {(1, 1), (1, 2)} (3)

EnvB,Σ,S2(a, U, {(2, 2)}) if a ∈ Peq and R = {(2, 2), (1, 2)} (4)

EnvB,Σ,S2(a, U, {(2, 2)}) \ Ped if a /∈ Peq and R = {(2, 2)} (5)

EnvB,Σ,S2(a, U, {(1, 1)}) \ Peq if R = {(1, 1)} (6)

EnvB,Σ,S2(d, U, {(2, 2)}) if a /∈ Peq and R = {(1, 2)} (7)

for the unique d ∈ Ped such that d1∼B
1 a

∅ otherwise (8)

Example 4.2.11. Let us illustrate all the cases of Lemma 4.2.10 using Figure 4.2(a), and
letting Σ = Θ = ∅.

1. Let a = a1 and R = Ĩ2 . Then, EnvA,Σ,I2 (a, ∅, R) = {a1, a2, a3}. We also have
that EnvB,Σ,S2(a, ∅,S2) = {a1, a2, a3, b1}: These are the elements that coincide with
a exactly on the first and the on the second data value when we dismiss the diagonal
relation. Of course, as we consider B, this includes b1, which we have to exclude.
Thus, EnvA,Σ,I2 (a, ∅, R) = EnvB,Σ,S2(a, ∅,S2) \ Ped.

2. Let a = a7 and R = S2. Then, EnvA,Σ,I2 (a, ∅, R) = EnvB,Σ,S2(a, ∅,S2) = {a7}. Since
a 6∈ Peq, it actually does not matter whether we include the diagonal relation or not.

3. Let a = a7 and R = {(1, 1), (1, 2)}. Then, EnvA,Σ,I2 (a, ∅, R) = {a1, a2, a3}. So
how do we get this set in B without referring to the diagonal relation? The idea
is to use only 1∼1 ∈ S2 and to ensure data equality by restricting to elements in
Peq (again excluding Ped). Indeed, we have EnvB,Σ,S2(a, ∅, {(1, 1)}) ∩ (Peq \ Ped) =

{a1, a2, a3, b1} ∩ ({a1, a2, a3, b1} \ {b1}) = {a1, a2, a3}.

4. Let a = a1 and R = {(2, 2), (1, 2)}. Then, EnvA,Σ,I2 (a, ∅, R) = {a4, a5}. So we
are looking for elements that have 1 as the second data value and a first data value
different from 1, and this set is exactly EnvB,Σ,S2(a, ∅, {(2, 2)}).
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5. Let a = a5 and R = {(2, 2)}. Then, EnvA,Σ,I2 (a, ∅, R) = {a1, a2, a3, a4}, which is the
set of elements that have 1 as the second data value and a first data value different
from 2. Thus, this is exactly EnvB,Σ,S2(a, ∅, {(2, 2)}) \ Ped (i.e., after discarding b1 ∈
Ped).

6. Let a = a4 and R = {(1, 1)}. We have EnvA,Σ,I2 (a, ∅, R) = {a8}. Looking at B and
discarding the diagonal relation would also include b3 and any element with data-value
pair (3, 3). Discarding Peq, we obtain EnvB,Σ,S2(a, ∅, {(1, 1)})\Peq = {a8, b3}\{b3} =

{a8}.

7. Let a = a7 and R = {(1, 2)}. Then, EnvA,Σ,I2 (a, ∅, R) = {a4, a5}, which is the set
of elements whose second data value is 1 and whose first data value is different from
1. The idea is now to change the reference point. Take the unique d ∈ Ped such that
d1∼B

1 a. Thus, d = b1. The set EnvB,Σ,S2(b1, ∅, {(2, 2)}) gives us exactly the elements
that have 1 as the second data value and a first value different from 1, as desired.

�

Proof of Lemma 4.2.10: Let A = (A, (Pσ)σ, f1, f2) ∈ Str(Θ∪{eq}; 2DMS) be eq-respecting
and B = A + ed. We consider a ∈ A, U ⊆ Σ, and R ⊆ Ĩ2 be a nonempty set.
Note that by definition of Env, we have EnvA,Σ,I2 (a, U,R) = EnvB,Σ,I2 (a, U,R) \ Ped and
when R 6= {(1, 2)}, we have EnvB,Σ,S2(a, U,R \ {(1, 2)}) = EnvB,Σ,I2 (a, U,R ∪ {(1, 2)}) ∪
EnvB,Σ,I2 (a, U,R \ {(1, 2)}). We will use these two equalities in the rest of the proof. We
now perform a case analysis on R.

1. Assume R = Ĩ2 = {(1, 1), (2, 2), (1, 2)}. First we suppose that a /∈ Peq. Since
A is eq-respecting it implies that f1(a) 6= f2(a). Now assume there exists b ∈
EnvA,Σ,I2 (a, U,R), this means that a 1∼A

1 b and a 2∼A
2 b and a 1∼A

2 b. Hence
we have f2(a) = f2(b) and f1(a) = f2(b), which is a contradiction. Consequently
EnvA,Σ,I2 (a, U,R) = ∅. We now suppose that a ∈ Peq. In that case, since A is eq-
respecting, we have EnvB,Σ,I2 (a, U,R\{(1, 2)}) = ∅. In fact if a2∼A

2 b for some b then
a 1∼A

2 b as a ∈ Peq. Hence we have EnvA,Σ,I2 (a, U,R) = EnvB,Σ,I2 (a, U,R) \ Ped =

EnvB,Σ,S2(a, U,S2) \ Ped.

2. Assume R = S2 = {(1, 1), (2, 2)}. By a similar reasoning as the previous case,
if a ∈ Peq, we have necessarily EnvA,Σ,I2 (a, U,R) = ∅. Now suppose a /∈ Peq.
Thanks to this hypothesis, we know that Ped ∩ EnvB,Σ,S2(a, U,S2) = ∅ and that
EnvB,Σ,I2 (a, U, {(1, 1), (2, 2), (1, 2)}) = ∅. So we obtain directly EnvA,Σ,I2 (a, U,S2) =

EnvB,Σ,S2(a, U,S2).

3. Assume R = {(1, 1), (1, 2)}. Again it is obvious that if a ∈ Peq, we have
EnvA,Σ,I2 (a, U,R) = ∅. We suppose that a /∈ Peq. Note that we have that
EnvB,Σ,I2 (a, U,R) ⊆ Peq and EnvB,Σ,I2 (a, U, {1, 1}) ∩ Peq = ∅ . Since
EnvB,Σ,S2(a, U, {(1, 1)}) = EnvB,Σ,I2 (a, U,R) ∪ EnvB,Σ,I2 (a, U, {(1, 1)}), we deduce
that EnvB,Σ,S2(a, U, {(1, 1)}) ∩ Peq = EnvB,Σ,I2 (a, U,R). From which we can con-
clude EnvA,Σ,I2 (a, U,R) = EnvB,Σ,S2(a, U, {(1, 1)}) ∩ Peq \ Ped.
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4. Assume R = {(2, 2), (1, 2)}. Again, it is obvious that if a /∈ Peq, we have
EnvA,Σ,I2 (a, U,R) = ∅. We now suppose that a ∈ Peq. In that case, we have that
EnvB,Σ,I2 (a, U,R \ {(1, 2)}) = ∅ and furthermore EnvB,Σ,I2 (a, U,R) ∩ Ped = ∅. We
can hence conclude that EnvA,Σ,I2 (a, U,R) = EnvB,Σ,S2(a, U, {(2, 2)}).

5. Assume R = {(2, 2)}. As before if a ∈ Peq, we have EnvA,Σ,I2 (a, U,R) = ∅. We now
suppose that a /∈ Peq. In that case, we have immediately
EnvB,Σ,I2 (a, U, {(2, 2), (1, 2)}) = ∅ and consequently

EnvA,Σ,I2 (a, U,R) = EnvB,Σ,I2 (a, U, {(2, 2)}) \ Ped = EnvB,Σ,S2(a, U, {(2, 2)}) \ Ped .

6. Assume R = {(1, 1)}. Remember that we have:
EnvB,Σ,S2(a, U, {(1, 1)}) = EnvB,Σ,I2 (a, U, {(1, 1), (1, 2)}) ∪ EnvB,Σ,I2 (a, U, {(1, 1)}).
ButEnvB,Σ,I2 (a, U, {(1, 1), (1, 2)}) ⊆ Peq and EnvB,Σ,I2 (a, U, {(1, 1)}) ∩ Peq = ∅.
We hence deduce that EnvB,Σ,S2(a, U, {(1, 1)}) \ Peq = EnvB,Σ,I2 (a, U, {(1, 1)}) and
since (EnvB,Σ,S2(a, U, {(1, 1)}) \ Peq) ∩ Ped = ∅, we obtain EnvA,Σ,I2 (a, U,R) =

EnvB,Σ,S2(a, U, {(1, 1)}) \ Peq.

7. Assume R = {(1, 2)}. Again it is obvious that if a ∈ Peq, we have EnvA,Σ,I2 (a, U,R) =

∅. We now suppose that a /∈ Peq. By definition, since B = A + ed, in B there is a
unique d ∈ Ped such that d 1∼B

1 a. We have then EnvB,Σ,I2 (a, U,R) =

EnvB,Σ,I2 (d, U, {(1, 2), (2, 2)}). As for the case 4., we deduce that
EnvB,Σ,I2 (d, U, {(1, 2), (2, 2)}) = EnvB,Σ,S2(d, U, {(2, 2)}).
Hence EnvB,Σ,I2 (a, U,R) = EnvB,Σ,S2(d, U, {(2, 2)}).

Let us wrap up: By Lemmas 4.2.4 and 4.2.10, we end up with checking counting con-
straints in an extended data structure without using the diagonal relation.

Step 4: Counting in Two-Variable Logic

The next step is to express these constraints using two-variable formulas. Counting in two-
variable logic is established using further unary predicates. These additional predicates
allow us to define a partitioning of the universe of a structure into so-called intersections.
Suppose A = (A, (Pσ)σ, f1, f2) ∈ Str(Θ∪{eq, ed}; 2DMS), where Σ ⊆ Θ. Let a ∈ A\Ped and
define `Σ(a) = {σ ∈ Σ | a ∈ Pσ}. The intersection of a in A is the set {b ∈ A \ Ped | a 1∼1

b ∧ a 2∼2 b ∧ `Σ(a) = `Σ(b)}. A set is called an intersection in A if it is the intersection of
some a ∈ A \ Ped.

Example 4.2.12. Consider Figure 4.3 and suppose Σ = {p}. The intersections of the given
data structure are gray-shaded. �

Let us introduce the various unary predicates, which will be assigned to non-diagonal
elements. There are three types of them (for the first two types, also see Figure 4.3):

1. The unary predicates ℵγM = {γ1, . . . ,γM} have the following intended meaning: For
all intersections I and i ∈ {1, . . . ,M}, we have |I| ≥ i iff there is a ∈ I such that
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Figure 4.3: Counting intersections for M = 3 and elements with label p

a ∈ Pγi
. In other words, the presence (or absence) of γi in an intersection I tells us

whether |I| ≥ i.

2. The predicates ℵαM = {αji | i ∈ {1, . . . ,M} and j ∈ {1, . . . ,M+2}} have the following
meaning: If a is labeled with αji , then (i) there are at least j intersections sharing
the same first value and the same label set `Σ(a), and (ii) the intersection of a has i
elements if i ≤M − 1 and at least M elements if i = M . Hence, in αji , index i counts
the elements inside an intersection, and j labels up to M + 2 different intersections.
We need to go beyond M due to Lemma 4.2.10: When we remove certain elements
(e.g., Peq) from an environment, we must be sure to still have sufficiently many to be
able to count until M .

3. Labels from ℵβM = {βji | i ∈ {1, . . . ,M} and j ∈ {1, . . . ,M + 1}} will play a similar
role as those in ℵαM but consider the second values of the elements instead of the first
ones.

Example 4.2.13. A suitable labeling for types γ and α is illustrated in Figure 4.3 for M =

3. �

Let ℵM = ℵαM ∪ℵ
β
M ∪ℵ

γ
M denote the set of all these unary predicates. We now build sen-

tences ϕα, ϕβ, ϕγ ∈ FO2
2DMS[Θ∪{eq, ed}∪ℵM ;S2] that guarantee the respective properties,

and show that they indeed guarantee them. In particular, they make use of the formula
x 1∼1 y ∧ x 2∼2 y ∧

∧
σ∈Σ σ(x) ↔ σ(y) saying that two (non-diagonal) elements x and y

are in the same intersection.
To deal with the predicates in ℵγM , we first define the formula ϕint

same = x 1∼1 y ∧ x 2∼2

y ∧
∧
σ∈Σ σ(x)↔ σ(y) and introduce the following formulas:

ϕ1
γ(x) :=

∨
i∈[1,M ]

(
γi(x) ∧

∧
j∈[1,M ]\{i}

¬γj(x)
)

ϕ2
γ(x) :=

∧
i∈[1,M−1]

(
γi(x)→ ¬∃y.

(
x 6= y ∧ ϕint

same(x, y) ∧ γi(y)
))

ϕ3
γ(x) :=

∧
i∈[2,M ]

(
γi(x)→

(
∃y.ϕint

same(x, y) ∧ γi−1(y)
))

We then let ϕγ := ∀x.
(
¬ed(x) → (ϕ1

γ(x) ∧ ϕ2
γ(x) ∧ ϕ3

γ(x))
)
∧
(
ed(x) →

∧
γ∈ℵγM

¬γ(x)
)
.

Thus, a data structure satisfies ϕγ if no diagonal element is labelled with predicates in ℵγM



78 CHAPTER 4. DECIDING THE SATISFIABILITY OF THE LOCAL FRAGMENTS

and (1) all its non-diagonal elements are labelled with exactly one predicate in ℵγM (see ϕ1
γ),

(2) if i ≤M − 1, then there are no two γi-labelled elements with the same labels of Σ and
in the same intersection (see ϕ2

γ), and (3) if i ≥ 2, then for all γi-labelled elements, there
exists an γi−1-labelled element with the same labels of Σ and in the same intersection (see
ϕ3
γ).

Lemma 4.2.14. Let A = (A, (Pσ)σ, f1, f2) ∈ Str(Σ∪{eq}∪CM∪ℵM ; 2DMS) be eq-respecting
and such that A + ed |= ϕγ. We consider a ∈ A and γi ∈ ℵM and Ea = {b ∈ A | a 1∼1 b ∧
a 2∼2 b ∧ `Σ(a) = `Σ(b)}. Then, |Ea| ≥ i iff there exists b ∈ Ea such that b ∈ Pγ[i].

Proof: For any b ∈ Ea, as A + ed |= ϕ1
γ there is exactly one j ∈ [1,M ] such that b ∈ Pγj

.
This allow us to build the function f : Ea → [1,M ] which associates to any b ∈ Ea such a j.
Let J = {f(b)|b ∈ Ea} denotes the image of Ea under f . As A+ed |= ϕ3

γ, for any j ∈ [2,M ]

if j ∈ J then j − 1 ∈ J . And as Ea 6= ∅, there is jmax ∈ [1,M ] such that J = [1, jmax]. We
can now rephrase our goal as |Ea| ≥ i iff i ∈ J . Assuming that i ∈ J , we have i ≤ jmax.
As f is a function, we have |Ea| ≥ |J |. As |J | = jmax, we have that |Ea| ≥ i. Conversely,
assuming that |Ea| ≥ i. Assume by contradiction that i /∈ J , then jmax < i ≤ M . That
is, for all j ∈ J , we have j < M . Since A + ed |= ϕ2

γ, all elements of J have exactly one
preimage. So |Ea| = |J | = jmax < i, which contradicts the assumption.

It is then easy to see that, in an intersection, if there is an element a labelled by γi

and no element labelled by γi+1 for i < M , then the intersection has exactly i elements;
moreover, if there is a node a labelled by γM then the intersection has at least M elements.

We now show how we use the predicates in ℵαM and introduce the following formulas
(where ϕint

same = x 1∼1 y ∧ x 2∼2 y ∧
∧
σ∈Σ σ(x)↔ σ(y) and ϕsame =

∧
σ∈Σ σ(x)↔ σ(y)):

ϕ1
α(x) :=

∨
i∈[1,M ]

j∈[1,M+2]

(
αji (x) ∧

∧
k∈[1,M ]
`∈[1,M+2]
(k,`)6=(i,j)

¬α`k(x)

)

ϕ2
α(x) :=

∧
i∈[1,M ]

j∈[1,M+2]

(
αji (x)→ ∀y.

(
(¬ed(y) ∧ ϕint

same(x, y))→ αji (y)
))

ϕ3
α(x) :=

∧
i∈[1,M−1]
j∈[1,M+2]

(
αji (x)→

(
∃y.
(
ϕint

same(x, y) ∧ γi(y)
)

∧ ¬∃y.
(
ϕint

same(x, y) ∧ γi+1(y)
) )) ∧

∧
j∈[1,M+2]

(
αjM (x)→ ∃y.

(
ϕint

same(x, y) ∧ γM (y)
))

ϕ4
α(x) :=

∧
i∈[1,M ]

j∈[1,M+1]

(
αji (x)→ ∀y.

((
¬ed(y) ∧ ϕsame(x, y)

∧ x 1∼1 y ∧ ¬(x 2∼2 y)

)
→

∧
k∈[1,M ]

¬αjk(y)

))
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ϕ5
α(x) :=

∧
i∈[1,M ]

j∈[2,M+2]

(
αji (x)→ ∃y.

(
ϕsame(x, y) ∧ x 1∼1 y ∧

∨
k∈[1,M ]

αj−1
k (y)

))

We then define ϕα := ∀x.
(
(¬ed(x)) → (ϕ1

α(x) ∧ ϕ2
α(x) ∧ ϕ3

α(x) ∧ ϕ4
α(x) ∧ ϕ5

α(x))
)
∧

(ed(x) →
∧

α∈ℵαM
¬α(x)). Note that ϕα is a two-variable formula in FO2

2DMS[Θ ∪ {ed} ∪
ℵM ;S2]. If a data structure satisfies ϕα, then no diagonal element is labelled with predicates
in ℵαM and all its non-diagonal elements are labelled with exactly one predicate in ℵαM (see
ϕ1
α). Furthermore, all non-diagonal elements in a same intersection are labelled with the

same αji (see ϕ2
α), and there are exactly i such elements in the intersection if i ≤ M − 1

and at least M otherwise (see ϕ3
α). Finally, we want to identify up to M + 2 different

intersections sharing the same first value and we use the j in αji for this matter. Formula
ϕ4
α tells us that no two non-diagonal elements with the same labels of Σ share the same

index j (for j ≤ M + 1) if they do not belong to the same intersection and have the same
first value. The formula ϕ5

α specifies that, if an element a is labelled with αji , then there
are at least j different nonempty intersections with the same labels of Σ as a sharing the
same first values. The next lemma formalizes the property of this labelling.

Lemma 4.2.15. We consider A = (A, (Pσ)σ, f1, f2) ∈ Str(Σ ∪ {eq} ∪ CM ∪ ℵM ; 2DMS)

eq-respecting and such that A + ed |= ϕγ ∧ ϕα and a ∈ A. Let Sa,1∼1
= {b ∈ A | a 1∼A

1

b ∧ `Σ(a) = `Σ(b)} and Sja,1∼1,i
= Sa,1∼1 ∩ Pα

j
i
for all i ∈ [1,M ] and j ∈ [1,M + 2]. The

following properties hold:

1. We have Sa,1∼1 =
⋃
i∈[1,M ],j∈[1,M+2] S

j
a,1∼1,i

.

2. For all j, ` ∈ [1,M + 2] and i, k ∈ [1,M ] such that i 6= k or j 6= l, we have Sja,1∼1,i
∩

S`a,1∼1,k
= ∅.

3. For all j ∈ [1,M + 1] and i ∈ [1,M ] such that b, c ∈ Sja,1∼1,i
, we have b 2∼2 c.

4. For all b, c ∈ Sa,1∼1 such that b 2∼2 c, there exist j ∈ [1,M + 2] and i ∈ [1,M ] such
that b, c ∈ Sja,1∼1,i

.

5. For all j ∈ [1,M + 2] and i ∈ [1,M ] such that b ∈ Sja,1∼1,i
, we have{

|{c ∈ A | b1∼A
1 c ∧ b2∼A

2 c ∧ `Σ(b) = `Σ(c)}| = i if i ≤M − 1

|{c ∈ A | b1∼A
1 c ∧ b2∼A

2 c ∧ `Σ(b) = `Σ(c)}| ≥M otherwise.

6. For all j ∈ [1,M + 1], there exists at most one i such that Sja,1∼1,i
6= ∅.

7. For all j ∈ [2,M + 2] and i ∈ [1,M ] such that Sja,1∼1,i
6= ∅, there exists k ∈ [1,M ]

such Sj−1
a,1∼1,k

6= ∅.

Proof: We prove the different statements:

1. Thanks to the formula ϕ1
α(x) we have that A =

⋃
i∈[1,M ],j∈[1,M+2] Pα

j
i
. Since Sa,1∼1

=
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A ∩ Sa,1∼1 , we deduce that

Sa,1∼1
=

 ⋃
i∈[1,M ],j∈[1,M+2]

Pα
j
i

 ∩ Sa,1∼1
=

⋃
i∈[1,M ],j∈[1,M+2]

Sja,1∼1,i
.

2. This point can be directly deduced thanks to ϕ1
α(x).

3. This point can be directly deduced thanks to ϕ4
α(x).

4. Since b ∈ Sa,1∼1 , by 1. there exist j ∈ [1,M + 2] and i ∈ [1,M ] such that b ∈ Sja,1∼1,i
.

Furthermore, since c ∈ Sa,1∼1
, using formula ϕ2

α(x), we deduce that c ∈ Sja,1∼1,i
.

5. This point can be directly deduced thanks to formula ϕ3
α(x) and to Lemma 4.2.14.

6. Assume there exist i, i′ ∈ [1,M ] such that i 6= i′ and Sja,1∼1,i
6= ∅ and Sja,1∼1,i′

6= ∅.
Let b ∈ Sja,1∼1,i

and c ∈ Sja,1∼1,i′
6= ∅. If b 2∼A

2 c, then, by 5., we necessarily have
i = i′. Hence we deduce that b 2∼A

2 c does not hold, and we can conclude thanks to
formula ϕ4

α(x).

7. This point can be directly deduced thanks to formula ϕ5
α(x).

While the predicates αji deal with the relation 1∼1, we now define a similar formula
ϕβ ∈ FO2[Θ ∪ {ed} ∪ ℵM ;S2] for the predicates in ℵβM to count intersections connected by
the binary relation 2∼2. We introduce hence the following formulas (where ϕint

same = x 1∼1

y ∧ x 2∼2 y ∧
∧
σ∈Σ σ(x)↔ σ(y) and ϕsame =

∧
σ∈Σ σ(x)↔ σ(y)):

ϕ1
β(x) :=

∨
i∈[1,M ]

j∈[1,M+1]

(
βji (x) ∧

∧
k∈[1,M ]
`∈[1,M+1]
(k,`)6=(i,j)

¬β`k(x)

)

ϕ2
β(x) :=

∧
i∈[1,M ]

j∈[1,M+1]

(
βji (x)→ ∀y.

(
(¬ed(y) ∧ ϕint

same(x, y))→ βji (y)
))

ϕ3
β(x) :=

∧
i∈[1,M−1]
j∈[1,M+1]

(
βji (x)→

(
∃y.
(
ϕint

same(x, y) ∧ γi(y)
)

∧ ¬∃y.
(
ϕint

same(x, y) ∧ γi+1(y)
) )) ∧

∧
j∈[1,M+1]

(
βjM (x)→ ∃y.

(
ϕint

same(x, y) ∧ γM (y)
))

ϕ4
β(x) :=

∧
i∈[1,M ]
j∈[1,M ]

(
βji (x)→ ∀y.

((
¬ed(y) ∧ ϕsame(x, y)

∧ ¬(x 1∼1 y) ∧ x 2∼2 y

)
→

∧
k∈[1,M ]

¬βjk(y)

))



4.2. DECIDABILITY WITH ONE DIAGONAL RELATION 81

ϕ5
β(x) :=

∧
i∈[1,M ]

j∈[2,M+1]

(
βji (x)→ ∃y.

(
ϕsame(x, y) ∧ x 2∼2 y ∧

∨
k∈[1,M+1]

βj−1
k (y)

))

We then define ϕβ := ∀x.
(
(¬ed(x)) → (ϕ1

β(x) ∧ ϕ2
β(x) ∧ ϕ3

β(x) ∧ ϕ4
β(x))

)
∧ (ed(x) →∧

β∈ℵβM
¬β(x)).

The following Lemma is the equivalent of the Lemma 4.2.15 for the relation 2∼2. Its
proof is similar to the one of the Lemma 4.2.15.

Lemma 4.2.16. We consider A = (A, (Pσ)σ, f1, f2) ∈ Str(Σ ∪ {eq} ∪ CM ∪ ℵM ; 2DMS)

eq-respecting and such that A + ed |= ϕγ ∧ ϕβ and a ∈ A. Let Sa,2∼2
= {b ∈ A | a 2∼A

2

b ∧ `Σ(a) = `Σ(b)} and Sja,2∼2,i
= Sa,2∼2 ∩ Pβ

j
i
for all i ∈ [1,M ] and j ∈ [1,M + 1]. The

following statements hold:

1. We have Sa,2∼2 =
⋃
i∈[1,M ],j∈[1,M+1] S

j
a,2∼2,i

.

2. For all j, ` ∈ [1,M + 1] and i, k ∈ [1,M ] such that i 6= k or j 6= l, we have Sja,2∼2,i
∩

S`a,2∼2,k
= ∅.

3. For all j ∈ [1,M + 1] and i ∈ [1,M ] such that b, c ∈ Sja,2∼2,i
, we have b 1∼1 c.

4. For all b, c ∈ Sa,2∼2 such that b 1∼1 c, there exists j ∈ [1,M + 1] and i ∈ [1,M ] such
that b, c ∈ Sja,2∼2,i

.

5. For all j ∈ [1,M + 1] and i ∈ [1,M ] such that b ∈ Sja,2∼2,i
, we have{

|{c ∈ A | b1∼A
1 c ∧ b2∼A

2 c ∧ `Σ(b) = `Σ(c)}| = i if i ≤M − 1

|{c ∈ A | b1∼A
1 c ∧ b2∼A

2 c ∧ `Σ(b) = `Σ(c)}| ≥M otherwise.

6. For all j ∈ [1,M ], there exists at most one i such that Sja,2∼2,i
6= ∅.

7. For all j ∈ [2,M + 1] and i ∈ [1,M ] such that Sja,2∼2,i
6= ∅, there exists k ∈ [1,M ]

such Sj−1
a,2∼2,k

6= ∅.

Now that we can rely on a consistent labeling with predicates from ℵM , let us see how
we can exploit it to express HU,R,mI ∈ CM , with additional help from Lemma 4.2.10, as a
formula ϕU,R,m(x) ∈ FO2

2DMS[Θ∪ {eq, ed} ∪ ℵM ;S2] applied to non-diagonal elements (out-
side Ped). Hereby, we will use, for U ⊆ Σ, the formula ϕU (y) =

∧
σ∈U σ(y)∧

∧
σ∈Σ\U ¬σ(y).

We now provide the definition of the formulas ϕU,R,m using a case analysis on the shape of
R and the result of Lemma 4.2.10:

1. Case R = {(1, 1), (2, 2), (1, 2)}: We need to say that (i) the element a under consid-
eration is in Peq, and (ii) there is an intersection of size at least m (i..e., it contains a
γm-labeled element) whose elements b satisfy a 1∼1 b, a 2∼2 b, and `Σ(b) = U :

ϕU,R,m(x) := eq(x) ∧ ∃y.
(
ϕU (y) ∧ x 1∼1 y ∧ x 2∼2 y ∧ γm(y)

)
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2. Case R = {(1, 1), (2, 2)}:

ϕU,R,m(x) := ¬eq(x) ∧ ∃y.(ϕU (y) ∧ x 1∼1 y ∧ x 2∼2 y ∧ γm(y))

3. Case R = {(1, 1), (1, 2)}:

ϕU,R,m(x) := ¬eq(x) ∧ ∃y.(ϕU (y) ∧ eq(y) ∧ x 1∼1 y ∧ γm(y))

4. Case R = {(2, 2), (1, 2)}: For this case, we first need an extra definition. For m ∈
[1,M ], we define Sβ,m the set of subsets of ℵαM as follows: Sβ,m = {{βj1i1 , . . . ,β

jk
ik
} |

i1 + . . . + ik ≥ m and j1 < j2 < . . . < jk}. It corresponds to the sets of element βji
whose sum of i is greater than or equal to m. We then have:

ϕU,R,m(x) := eq(x) ∧
∨

S∈Sβ,m

∧
β∈S

∃y.
(
ϕU (y) ∧ ¬eq(y) ∧ β(y) ∧ x 2∼2 y

)

5. Case R = {(2, 2)}: we use again the set Sβ,m introduced previously.

ϕU,R,m(x) := ¬eq(x) ∧
∨

S∈Sβ,m

∧
β∈S

∃y.
(
ϕU (y) ∧ β(y) ∧ ¬(x 1∼1 y) ∧ x 2∼2 y

)

6. Case R = {(1, 1)}: Similar to Case 4., we first need an extra definition. For
m ∈ {1, . . . ,M}, we define the set Sα,m of subsets of ℵαM as follows: Sα,m =

{{αj1i1 , . . . ,α
jk
ik
} | i1 + . . . + ik ≥ m and j1 < j2 < . . . < jk}. It corresponds to

the sets of elements αji whose sum of i is greater than or equal to m. We then have:

ϕU,R,m(x) :=
∨

S∈Sα,m

∧
α∈S
∃y.
(
ϕU (y) ∧ α(y) ∧ ¬eq(y) ∧ x 1∼1 y ∧ ¬(x 2∼2 y)

)

7. Case R = {(1, 2)}: We use here again the set Sβ,m introduced in Case 4.

ϕU,R,m(x) := ¬eq(x) ∧ ∃y.
(
ed(y) ∧ x 1∼1 y ∧∨

S∈Sβ,m

∧
σ∈S
∃x.
(
ϕU (x) ∧ σ(x) ∧ ¬(y 1∼1 x) ∧ y 2∼2 x

))

Finally, it remains to say that all elements are labeled with the suitable counting con-
straints. So we let ϕcc = ∀x.¬ed(x)→

∧
HU,R,mI∈ CM

HU,R,mI(x)↔ ϕU,R,m(x).

Lemma 4.2.17. Let A = (A, (Pσ)σ, f1, f2) ∈ Str(Σ ∪ {eq} ∪ CM ∪ ℵM ; 2DMS) be eq-
respecting. If A + ed |= ϕα ∧ ϕβ ∧ ϕγ ∧ ϕcc, then A is cc-respecting.

Sketch of proof: Let A = (A, (Pσ)σ, f1, f2) ∈ Str(Σ∪{eq}∪CM∪ℵM ; 2DMS) be eq-respecting
and such that A + ed |= ϕα ∧ ϕβ ∧ ϕγ ∧ ϕcc. We need to show that for all a ∈ A and all
HU,R,mI ∈ CM , we have a ∈ PHU,R,mI iff |EnvA,Σ,I2 (a, U,R)| ≥ m. We consider a ∈ A.
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Since A + ed |= ϕcc, we deduce that a ∈ PHU,R,mI iff A + ed |=I[x/a] ϕU,R,m(x). We need
hence to show that A+ed |=I[x/a] ϕU,R,m(x) iff |EnvA,Σ,I2 (a, U,R)| ≥ m. To prove this , we
first use Lemma 4.2.10 to get a characterization of EnvA,Σ,I2 (a, U,R). This characterization
is then directly translated into the formula ϕU,R,m(x) which makes use of the label in ℵM
to count in the environment of a. The fact that this counting is performed correctly is
guaranteed by Lemmas 4.2.14,4.2.15 and 4.2.16. Putting these arguments together, we can
conclude that the lemma holds.

Step 5: Putting it All Together

Let All = Σ ∪ {eq, ed} ∪ CM ∪ ℵM denote the set of all the unary predicates that we have
introduced so far. Recall that, after Step 1, we were left with M ≥ 1 and a formula
ϕ ∈ FO2DMS[Σ ∪ {eq} ∪ CM ; ∅]. The question is now whether ϕ has a well-typed model
(i.e., a model that is eq-respecting and cc-respecting). Altogether, we get the following
reduction:

Proposition 4.2.18. Let ϕ ∈ FO2DMS[Σ ∪ {eq} ∪ CM ; ∅]. Then, ϕ has a well-typed model
iff ϕ̂ := [[ϕ]]+ed ∧ ξAll\{eq,ed}ed ∧ ϕα ∧ ϕβ ∧ ϕγ ∧ ϕcc ∈ ext-FO2

2DMS[All;S2] is satisfiable.

Proof: Suppose ϕ̂ is satisfiable. Then, there is B ∈ Str(All; 2DMS) such that B |= ϕ̂. By
Lemma 4.2.7, there exists an eq-respecting data structure A ∈ Str(Σ∪{eq}∪CM∪ℵM ; 2DMS)

such that A + ed |= [[ϕ]]+ed ∧ ϕα ∧ ϕβ ∧ ϕγ ∧ ϕcc. Using Lemma 4.2.17, we deduce that
A is cc-respecting and, thus, well-typed. Furthermore, by Lemma 4.2.9, we have A |= ϕ.
Note that A belongs to Str(Σ ∪ {eq} ∪ CM ∪ ℵM ; 2DMS). However, by removing the unary
predicates in ℵM , we still have a model of ϕ from Str(Σ ∪ {eq} ∪ CM ; 2DMS) as required.
Hence, ϕ has a well-typed model.

Assume now that there exists a well-typed data structure A ∈ Str(Σ∪{eq}∪CM ; 2DMS)

such that A |= ϕ. Using Lemma 4.2.9, we have that A + ed |= [[ϕ]]+ed. Furthermore, using
the fact that A is well-typed, we can add the unary predicates from ℵM to A+ ed to obtain
a data structure A′ in Str(All; 2DMS) such that A′ |= ϕα ∧ ϕβ ∧ ϕγ ∧ ϕcc. Note that A′ is
well-diagonalized. We deduce that A′ |= ϕ̂.

Theorem 4.2.19

2DMS-Sat(1-LFint; {(1, 1), (2, 2), (1, 2)}) is decidable.

Proof: Let ψ ∈ 1-LFint
2 [Σ; (1, 1), (2, 2), (1, 2)]. Using Lemma 4.2.4, we can effectively com-

puteM ∈ N and ϕ ∈ FO2DMS[Σ∪{eq}∪CM ; ∅] such that ψ is satisfiable iff ϕ has a well-typed
model. By Proposition 4.2.18, ϕ has a well-typed model iff ϕ̂ is satisfiable. Since ϕ̂ belongs
to ext-FO2

2DMS[All;S2], we conclude using Proposition 4.1.2.

4.3 Undecidability Results

We now show that extending the neighborhood radius yields undecidability. The starting
point of our reduction is the domino problem. We already exposed the domino problem in
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Section 2.2.2, although it was more general. We first recall some definition and notation so
it is not mandatory to read Section 2.2.2 in order to understand the following section.

The Tiling Problem. A domino system D is a triple (D,H, V ) where D is a finite set
of dominoes and H,V ⊆ D × D are two binary relations. Let Gm denote the standard
grid on an m × m torus, i.e., Gm = (Gm, Hm, Vm) where Hm and Vm are two binary
relations defined as follows: Gm = Zmodm × Zmodm, Hm = {((i, j), (i′, j)) | i′ − i ≡ 1

mod m}, and Vm = {((i, j), (i, j′)) | i′ − i ≡ 1 mod m}. In the sequel, we will suppose
Zmodm = {0, . . . ,m− 1} using the least positive member to represent residue classes.

A bi-binary structure is a triple (A,R1, R2) where A is a finite set and R1, R2 are subsets
of A×A. Domino systems and Gm for any m are examples of bi-binary structures. For two
bi-binary structures G = (G,H, V ) andG′ = (G′, H ′, V ′), we say thatG is homomorphically
embeddable into G′ if there is a morphism π : G → G′, i.e., a mapping π such that, for
all a, a′ ∈ G, (a, a′) ∈ H ⇒ (π(a), π(a′)) ∈ H ′ and (a, a′) ∈ V ⇒ (π(a), π(a′)) ∈ V ′. For
instance, Gk·m is homomorphically embeddable into Gm through reduction mod m. For a
domino system D, a periodic tiling is a morphism τ : Gm → D for some m and we say that
D admits a periodic tiling if there exists a periodic tiling of D.

The problem Unbounded-Tiling (or periodic tiling problem), which is well known to
be undecidable [12], is defined as follows: Given a domino system D, does D admit a periodic
tiling?

To use Unbounded-Tiling in our reductions, we first use some specific bi-binary struc-
tures, which we call grid-like and which are easier to manipulate in our context to encode
domino systems. A bi-binary structure G = (A,H, V ) is said to be grid-like if some Gm
is homomorphically embeddable into G. The logic FO over bi-binary structures refers to
the first-order logic on two binary relations H,V, and we write Hxy to say that x and y

are in relation for H. Consider the two following FO formulas over bi-binary structures:
ϕcomplete = ∀x.∀y.∀x′.∀y′.((Hxy ∧ Vxx′ ∧ Vyy′)→ Hx′y′) and ϕprogress = ∀x.(∃y.Hxy ∧ ∃y.
Vxy). The following lemma, first stated and proved in [42], shows that these formulas suffice
to characterize grid-like structures:

Lemma 4.3.1 ([42]). Let G = (A,H, V ) be a bi-binary structure. If G satisfies ϕcomplete

and ϕprogress , then G is grid-like.

Given A = (A, (Pσ), f1, f2) ∈ Str(Σ; 2DMS) and ϕ(x, y) ∈ FO2DMS[Σ;R], we define
the binary relation [[ϕ]]A = {(a, b) ∈ A × A | A |= ϕ(a, b)}. Thus, given two FO2DMS[Σ;R]

formulas ϕ1(x, y), ϕ2(x, y) with two free variables, (A, [[ϕ1]]A, [[ϕ2]]A) is a bi-binary structure.
As we want to reason on data structures, we build a data structure A2m that corresponds

to the grid G2m = (G2m, H2m, V2m). This structure is depicted locally in Figure 4.4.
To define A2m, we use four unary predicates given by Σgrid = {X0, X1, Y0, Y1}. They
give us access to the coordinate modulo 2. We then define A2m = (G2m, (Pσ), f1, f2) ∈
Str(Σgrid ; 2DMS) as follows: For k ∈ {0, 1}, we have PXk

= {(i, j) ∈ G2m | i ≡ k mod 2}
and PYk

= {(i, j) ∈ G2m | j ≡ k mod 2}. For all i, j ∈ {0, . . . , 2m − 1}, we set f1(i, j) =

((i/2) mod m) +m ∗ ((j/2) mod m) (where / stands for the Euclidian division). Finally,
for all i, j ∈ {1, . . . , 2m}, set f2(i mod (2m), j mod (2m)) = f1(i− 1, j − 1).
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X0

Y0

X0

Y0

X0

Y0

X0

Y0

X1

Y1

X1

Y1

X1

Y1

Figure 4.4: The local pattern of A2m.
Dots denote elements. Two dots are in
the same 1∼1-equivalence class (resp.
2∼2) iff they are in the same green
(resp. purple) area. The thick black
lines represent the relation 1∼2 in the
following way: if a 1∼1-equivalence
class C1 and a 2∼2-equivalence class C2

are connected with a thick black line,
then for any a ∈ C1 and b ∈ C2, we
have a 1∼2 b.

We define the quantifier free formulas ϕH(x, y) from the logic FO2DMS[Σgrid ;S2] with
two free variable:

ϕ00
H = X0(x) ∧ X1(y) ∧ Y0(x) ∧ Y0(y) ∧ x 1∼1 y,

ϕ10
H = X1(x) ∧ X0(y) ∧ Y0(x) ∧ Y0(y) ∧ x 2∼2 y,

ϕ01
H = X0(x) ∧ X1(y) ∧ Y1(x) ∧ Y1(y) ∧ x 1∼1 y,

ϕ11
H = X1(x) ∧ X0(y) ∧ Y1(x) ∧ Y1(y) ∧ x 2∼2 y,

ϕH = ϕ00
H ∨ ϕ10

H ∨ ϕ01
H ∨ ϕ11

H .

Similarly, we define ϕV (x, y) from FO2DMS[Σgrid ;S2] with two free variable and quantifier
free:

ϕ00
V = X0(x) ∧ X0(y) ∧ Y0(x) ∧ Y1(y) ∧ x 1∼1 y,

ϕ10
V = X1(x) ∧ X1(y) ∧ Y0(x) ∧ Y1(y) ∧ x 1∼1 y,

ϕ01
V = X0(x) ∧ X0(y) ∧ Y1(x) ∧ Y0(y) ∧ x 2∼2 y,

ϕ11
V = X1(x) ∧ X1(y) ∧ Y1(x) ∧ Y0(y) ∧ x 2∼2 y,

ϕV = ϕ00
V ∨ ϕ10

V ∨ ϕ01
V ∨ ϕ11

V .

These formulas allow us to make the link between the data structure A2m and the grid
G2m, and we will use them later on to ensure that a data structure has a shape ’similar’ to
A2m.

Remark 4.3.2. Note that, using the definitions of G2m and of A2m we can show that, if G
is the bi-binary structure (G2m, [[ϕH ]]A2m

, [[ϕV ]]A2m
), then G2m = G. �

Proof: We have hence to prove that H2m = {(a, b) | A2m |= ϕH(a, b)} and V2m = {(a, b) |
A2m |= ϕH(a, b)}. We first show that H2m ⊆ [[ϕH ]]A2m

. Let ((i, j), (i′, j′)) ∈ H2m. Hence we
have j = j′ and i′− i ≡ 1 mod 2m. We have then different cases according to the parity of
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j, i and i′. Assume i, j are even. Then (i, j), (i′, j′) ∈ PY0 and (i, j) ∈ PX0 and (i′, j) ∈ PX1

and by definition of f1, we have f1(i, j) = f1(i′, j), hence ((i, j), (i′, j)) ∈ [[ϕ00
H ]]A2m

and
((i, j), (i′, j)) ∈ [[ϕH ]]A2m

. The three other cases can be treated similarly.
We now prove that H2m ⊇ [[ϕH ]]A2m . Let (a, b) be such that A2m |= ϕH(a, b). For ϕH to

hold on (a, b), one of the ϕijH must hold. We treat the case A2m |= ϕ11
H (a, b). Write (a1, a2)

and (b1, b2) the coordinates of a and b respectively. As a ∈ PX0
∩PY0

and b ∈ PX1
∩PY0

, we
have that a1, a2, b2 are even and b1 is odd. As a 1∼1 b, we have ((a1/2) mod m)+m∗((a2/2)

mod m) = ((b1/2) mod m)+m∗ ((b2/2) mod m). This allows us to conclude that a2 = b2
and that a1 − b2 ≡ 1 mod m. So we have (a, b) ∈ H2m. The other cases can be treated in
a similar way.

The proof that V2m = [[ϕV ]]A2m
follows the exact same lines.

The Reduction to Radius 3. We first use the notions we introduced previously to
show that 2DMS-Sat(3-LFint

2 ; {1∼1, 2∼2}) is undecidable, hence we assume now that R =

{1∼1, 2∼2}. The first step in our reduction from Unbounded-Tiling consists in defining
ϕ3 -loc

grid ∈ 3-LFint
2 [Σgrid ; 1∼1, 2∼2] to check that a data structure corresponds to a grid (⊕

stands for exclusive or):

ϕ3 -loc
complete = ∀x.〈〈∀y.∀x′.∀y′.ϕH(x, y) ∧ ϕV (x, x′) ∧ ϕV (y, y′)→ ϕH(x′, y′)〉〉3,int

x

ϕ3 -loc
progress = ∀x.〈〈∃y.ϕH(x, y) ∧ ∃y.ϕV (x, y)〉〉3,int

x

ϕ3 -loc
grid = ϕ3 -loc

complete ∧ ϕ3 -loc
progress ∧ ∀x.〈〈(X0(x)⊕X1(x)) ∧ (Y0(x)⊕ Y1(x))〉〉3,int

x

Lemma 4.3.3. We have A2m |= ϕ3 -loc
grid . Moreover, for all structure A = (A, (Pσ), f1, f2) in

Str(Σgrid ; 2DMS), if A |= ϕ3 -loc
grid , then (A, [[ϕH ]]A, [[ϕV ]]A) is grid-like.

Proof: We first show that A2m |= ϕ3 -loc
grid . In the proof, we assume that m ≥ 3. The

cases m = 1 or 2 are treated in the same way. Let us prove the first conjunct, that is
A2m |= ϕ3 -loc

complete . Let a ∈ G2m. We want to prove that

A2m|3,int
a,S2 |=I[x/a] ∀y.∀x′.∀y′.ϕH(x, y) ∧ ϕV (x, x′) ∧ ϕV (y, y′) ⇒ ϕH(x′, y′)

for some interpretation function I. We proceed by a case analysis on the values of i, j ∈
{0, 1} such that a ∈ PXi ∩ PYj . Assume that (i, j) = (0, 0). Then A2m|3,int

a,S2 is depicted in
Figure 4.5a. Let b, a′, b′ such that

A2m|3,int
a,S2 |= ϕH(a, b) ∧ ϕV (a, a′) ∧ ϕV (b, b′) .

We want to show
A2m|3,int

a,S2 |= ϕH(a′, b′) .

By assumption on a and by looking at the definition of ϕH ,

A2m|3,int
a,S2 |= X1(b) ∧ Y0(b) ∧ a 1∼1 b .
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(a) a ∈ PX0 ∩ PY0
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X1

Y0

X1
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X0

Y1

X0

Y1

(b) a ∈ PX1 ∩ PY0

Figure 4.5: Some 3-local views of A2m for R = {1∼1, 2∼2}.

So by elimination we have that b is the element pointed by Figure 4.5a. In a similar way,
a′ and b′ are indeed the elements pointed by Figure 4.5a. Hence, we deduce

A2m|3,int
a,S2 |= ϕH(a′, b′) .

The case (i, j) = (1, 0) is depicted in Figure 4.5b and is proven in the same way just as
the cases when (i, j) = (1, 0) or (i, j) = (1, 1).

Showing that A2m |= ϕ3 -loc
progress is done in the same way as showing that A2m |= ϕ3 -loc

complete .

Finally, it is obvious that A2m satisfies the last conjunct of ϕ3 -loc
grid .

We now show that for all A = (A, (Pσ), f1, f2) in Str(Σgrid ; 2DMS), if A |= ϕ3 -loc
grid then

(A, [[ϕH ]]A, [[ϕV ]]A) is grid-like. By Lemma 4.3.1, it suffices to prove that (A, [[ϕH ]]A, [[ϕV ]]A)

satisfies ϕcomplete and ϕprogress . Let us prove that

(A, [[ϕH ]]A, [[ϕV ]]A) |= ∀x.∀y.∀x′.∀y′.((Hxy ∧ Vxx′ ∧ Vyy′) ⇒ Hx′y′) .

By definition of (A, [[ϕH ]]A, [[ϕV ]]A), this amounts to verifying that

A |= ∀x.∀y.∀x′.∀y′.ϕH(x, y) ∧ ϕV (x, x′) ∧ ϕV (y, y′) ⇒ ϕH(x′, y′) .

Let a, b, a′, b′ ∈ A such that A |= ϕH(a, b)∧ϕV (a, a′)∧ϕV (b, b′). Let us show A |= ϕH(a′, b′).
We do a case analysis on i, j ∈ {0, 1} such that a ∈ PXi ∩ PYj . We only perform the proof
for the case (i, j) = (1, 0), the other three case can be treated similarly. By looking at ϕH
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and ϕV , we have

A |=X0(b) ∧ Y0(b) ∧ a 2∼2 b,

A |=X0(b′) ∧ Y1(b′) ∧ b 1∼1 b
′,

A |=X1(a′) ∧ Y1(a′) ∧ a 1∼1 a
′.

So b, a, b′ are elements of A|3,int
a,S2 and

A|3,int
a,S2 |= ϕH(a, b) ∧ ϕV (a, a′) ∧ ϕV (b, b′) .

Since by assumption A |= ϕ3 -loc
complete , we deduce that A|3,int

a,S2 |= ϕH(a′, b′). This allows us to
conclude that A |= ϕH(a′, b′).

We can prove in a similar way that (A, [[ϕH ]]A, [[ϕV ]]A) |= ϕprogress can be proved in a
similar way.

Given a domino system D = (D,HD, VD), we now provide a formula ϕD from the logic
3-LFint

2 [D;S2] that guarantees that, if a data structure corresponding to a grid satisfies ϕD,
then it can be embedded into D:

ϕD := ∀x.〈〈
∨
d∈D

(
d(x) ∧

∧
d6=d′∈D ¬(d(x) ∧ d′(x))

)
〉〉3,int
x

∧ ∀x.〈〈∀y.ϕH(x, y)→
∨

(d,d′)∈HD d(x) ∧ d′(y)〉〉3,int
x

∧ ∀x.〈〈∀y.ϕV (x, y)→
∨

(d,d′)∈VD d(x) ∧ d′(y)〉〉3,int
x

Proposition 4.3.4. Given D = (D,HD, VD) a domino system, D admits a periodic tiling
iff the 3-LFint

2 [Σgrid ]D;S2] formula ϕ3 -loc
grid ∧ ϕD is satisfiable.

Proof: First assume that D admits a periodic tiling and let τ : Gm → D be one. As
with Lemma 4.3.3 we already have that A2m |= ϕ3 -loc

grid . From A2m we build another data
structure A′2m ∈ Str(Σgrid ]D; 2DMS) by adding the predicates (Pd)d∈D as follow: for any
i, j ∈ {0, 2m− 1} and d ∈ D we set Pd((i, j)) to hold iff τ((i mod m, j mod m)) = d. We
can then show that A2m |= ϕD.

Assume now that there exists A = (A, (Pσ), f1, f2) in Str(Σgrid ] D; 2DMS) such that
A |= ϕ3 -loc

grid ∧ ϕD. By Lemma 4.3.3, there exists m > 0 and a morphism π : Gm →
(A, [[ϕH ]]A, [[ϕV ]]A). It remains to show that there is a morphism τ : (A, [[ϕH ]]A, [[ϕV ]]A)→ D.
For any a ∈ A, we set τ(a) to be a domino such that Pτ(a)(a) holds. Thanks to the first
line of ϕD, τ is well defined. Then thanks to the second and third line of ϕD, we have that
τ is a morphism. We deduce that τ ◦ π is a periodic tiling of D.

As a corollary of the proposition, we obtain the main result of this section.

Theorem 4.3.5

2DMS-Sat(3-LFint
2 ; {1∼1, 2∼2}) is undecidable.
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The Reduction to Radius 2. We also show that 2DMS-Sat(2-LFint
2 ; {1∼1, 2∼2, 1∼2})

is undecidable. In that case, it is abit more subtle to build a formula similar to the formula
ϕcomplete as we have only neighborhood of radius 2, but we use the diagonal binary relation
, 1∼2 to overcome this. We recall that I2 = {1∼1, 2∼2, 1∼2}.

A tri-binary structure is a triple (A,H, V,W ) where A is a set and H,V,W are three
subsets of A×A. Intuitively H,V will capture the horizontal and vertical adjacency relation
whereas W will capture the diagonal adjacency. By an abuse of notation, Gm will also refer
to the tri-binary structure (Gm, Hm, Vm,Wm), were Gm, Hm and Vm are the same as before
and:

Wm = {((i, j), (i+ 1, j + 1)) | i, j ∈ Zmodm}.

The logic FO over tri-binary structure is the same as FO over bi-binary structure with the
addition of the binary symbol W. Let ϕ′complete be the following FO formula over tri-binary
structure:

ϕ′complete = ∀x.∀y.∀y′.(Hxy ∧ Vyy′ ⇒ Wxy′) ∧ ∀x.∀x.∀′y′.(Wxy′ ∧ Vxx′ ⇒ Hx′y′) .

Lemma 4.3.6. Let G = (A,H, V,W ) be a tri-binary structure. If G satisfies ϕ′complete and
ϕprogress , then (A,H, V ) is grid-like.

Proof: It is sufficient to notice that formula ϕ′complete implies ϕcomplete and then we apply
Lemma 4.3.1.

As in the previous subsection, we will consider data structures in Str(Σgrid ; 2DMS) to
encode domino systems and we will use 2-LFint

2 [Σgrid ; I2 ] formulae in order to ensure that
the data structures are grid-like and that an embedding of a domino system in it is feasible.
In the previous section, to ensure that a data structure is a grid, we used completely the
fact that we could look in our logical formulae to neighborhood of radius 3 (cf formula
ϕ3 -loc

grid ), but since here we want to look at neighborhoods of radius 2, we use the diagonal
relation and rely on the result of the previous lemma. Consequently, we will need again the
two quantifier free formulae ϕH(x, y) and ϕV (x, y) of FO2DMS[Σgrid ;S2] introduced in 4.3
and we define a new quantifier free formula ϕW (x, y) in FO2DMS[Σgrid ; (1, 2)]:

ϕ00
W = X0(x) ∧ X1(y) ∧ Y0(x) ∧ Y1(y) ∧ x 1∼2 y

ϕ10
W = X1(x) ∧ X0(y) ∧ Y0(x) ∧ Y1(y) ∧ x 1∼2 y

ϕ01
W = X0(x) ∧ X1(y) ∧ Y1(x) ∧ Y0(y) ∧ x 1∼2 y

ϕ11
W = X1(x) ∧ X0(y) ∧ Y1(x) ∧ Y0(y) ∧ x 1∼2 y

ϕW = ϕ00
W ∨ ϕ10

W ∨ ϕ01
W ∨ ϕ11

W

We will now define a formula ϕ2 -loc
grid in 2-LFint

2 [Σgrid ; 1∼1, 2∼2, 1∼2] which ensures that a
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(a) If X0(a) and Y0(a) hold.
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(b) If X1(a) and Y0(a) hold.

Figure 4.6: Some 2-local views of A2m for R = {1∼1, 2∼2, 1∼2}.

data structure corresponds to a grid. This formula is given by (⊕ stands for exclusive or):

ϕ2 -loc
complete = ∀x.〈〈∀yy′.ϕH(x, y) ∧ ϕV (y, y′) ⇒ ϕW (x, y′)〉〉2,int

x

∧ ∀x.〈〈∀yx′y′.ϕV (x, x′) ∧ ϕW (x, y′) ⇒ ϕH(x′, y′)〉〉2,int
x

ϕ2 -loc
progress = ∀x.〈〈∃y.ϕH(x, y) ∧ ∃y.ϕV (x, y)〉〉2,int

x

ϕ2 -loc
grid = ϕ2 -loc

complete ∧ ϕ2 -loc
progress ∧ ∀x.〈〈(X0(x)⊕X1(x)) ∧ (Y0(x)⊕ Y1(x))〉〉2,int

x

Lemma 4.3.7. The following statements hold:

1. A2m |= ϕ2 -loc
grid , and

2. for all A = (A, (Pσ), f1, f2) ∈ Str(Σgrid ; 2DMS), if A |= ϕ2 -loc
grid , then (A, [[ϕH ]]A, [[ϕV ]]A)

is grid-like.

Sketch of the proof: The proof is similar to the of Lemma 4.3.3. For the first point, Figure
4.6 provides some representation of A2m|2,int

a,I2 for some elements a ∈ G2m. For the second
point, following the same reasonning as in Lemma 4.3.3, we first show that the tri-binary
structure (A, [[ϕH ]]A, [[ϕV ]]A, [[ϕW ]]A) satisfies ϕ′complete and ϕprogress and we use Lemma
4.3.6 to conclude.

As previously, we provide a formula ϕ′D of 2-LFint
2 [D; 1∼1, 2∼2, 1∼2] for any domino

system D = (D,HD, VD). This formalism is morally the same as the formula ϕD, we only
restrict the neighborhood, but in the fact this does not change anything:

ϕ′D := ∀x.〈〈
∨
d∈D d(x) ∧

∧
d6=d′∈D ¬(d(x) ∧ d′(x))〉〉2,int

x

∧ ∀x.〈〈∀y.ϕH(x, y) ⇒
∨

(d,d′)∈HD d(x) ∧ d′(y)〉〉2,int
x

∧ ∀x.〈〈∀y.ϕV (x, y) ⇒
∨

(d,d′)∈VD d(x) ∧ d′(y)〉〉2,int
x

We have the following proposition whose proof follows the same line as Proposition 4.3.4.
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Proposition 4.3.8. Given D = (D,HD, VD) a domino system, we have that D admits a
periodic tiling iff the 2-LFint

2 [Σgrid ]D; {1∼1, 2∼2, 1∼2}] formula ϕ2 -loc
grid ∧ ϕ′D is satisfiable.

Finally, we obtain the desired undecidability result.
Theorem 4.3.9

2DMS-Sat(2-LFint
2 ; {1∼1, 2∼2, 1∼2}) is undecidable.
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Chapter 5

Deciding the satisfiability of the
existential fragments

This chapter presents the work of [11]. It is dedicated to set the nature of the satisfiability
problems of the existential fragment.

In this chapter, we will always have R = Aκ = {i∼j | 1 ≤ i, j ≤ κ}, so we might
sometimes omit to precise it. We will focus only on the fragment with exterior, that is we
will always have ℘ = ext. With those choices for the parameters R and ℘, we will have the
strongest decidability results.

From Chapter 3, we recall that the existential fragment is denoted ∃-r-LFext
κ [Σ;Aκ] and

is given by the grammar:

ϕ ::= 〈〈ψ〉〉r,ext
x | x = y | ¬(x = y) | ∃x.ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where ψ is a formula from FOκDMS[Σ;Aκ] with (at most) one free variable x. We also recall
that the quantifier free fragment qf-r-LFext

κ [Σ;Aκ] is defined by the grammar

ϕ ::= 〈〈ψ〉〉r,ext
x | x = y | ¬(x = y) | ϕ ∨ ϕ | ϕ ∧ ϕ.

Note that for both these fragments, we do not impose any restrictions on the use of quan-
tifiers in the formula ψ located inside the local modality 〈〈ψ〉〉r,ext

x .

In the first section, which is dedicated to positive results, we show the decidability of
2DMS-Sat(∃-2-LFext;A2) and for all κ ≥ 0 the decidability of κDMS-Sat(∃-1-LFext;Aκ).
In the second section, we show that as soon as we increase the parameters r or κ, the prob-
lems become undecidable, that is we show the undecidability of 2DMS-Sat(∃-3-LFext;A2)

and 3DMS-Sat(∃-2-LFext;A3).

From [11] there are two modifications; the first one is a slight change in the notation in
order to fit the ones of this manuscript, and the second modification is that definitions and
preliminary results have moved to Chapter 2.

93
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5.1 Decidability results

We show here decidability of 2DMS-Sat(∃-2-LFext;A2) and then, for all κ ≥ 0, the decid-
ability of κDMS-Sat(∃-1-LFext;Aκ).

5.1.1 Two data values and balls of radius 2

In this section, we prove that the satisfiability problem for the existential fragment of local
first-order logic with two data values and balls of radius two is decidable. To obtain this
result we provide a reduction to the satisfiability problem for first-order logic over 1-data-
multisets. Our reduction is based on the following intuition. Consider a 2-data-multiset
A = (A, (Pσ), f1, f2) ∈ Str(Σ; 2DMS) and an element a ∈ A. If we take an element b in
BA

2 (a), the radius-2-ball around a, we know that either f1(b) or f2(b) is a common value
with a. In fact, if b is at distance 1 of a, this holds by definition and if b is at distance 2 then
b shares an element with c at distance 1 of a and this element has to be shared with a as well
so b ends to be at distance 1 of a. The trick consists then in using extra-labels for elements
sharing a value with a that can be forgotten and to keep only the value of b not present in a,
this construction leading to a 1-data-multiset. It remains to show that we can ensure that
a 1-data-multiset is the fruit of this construction in a formula of FO1DMS[Σ′; {∼}] (where Σ′

is obtained from Σ by adding extra predicates).

The first step for our reduction consists in providing a characterisation for the elements
located in the radius-1-ball and the radius-2-ball around another element.

Lemma 5.1.1. Let A = (A, (Pσ), f1, f2) ∈ Str(Σ; 2DMS) and a, b ∈ A and j ∈ {1, 2}. We
have:

1. (b, j) ∈ BA
1 (a) iff there is i ∈ {1, 2} such that a i∼A

j b.

2. (b, j) ∈ BA
2 (a) iff there exists i, k ∈ {1, 2} such that a i∼A

k b.

Lemma 5.1.1 is a part of Corollary 3.2.28. But it is interesting to prove it more directly
too.

Proof: We show both statements:

1. Since (b, j) ∈ BA
1 (a), by definition we have either b = a and in that case a j∼A

j b holds,
or b 6= a and necessarily there exists i ∈ {1, 2} such that a i∼A

j b.

2. First, if there exists i, k ∈ {1, 2} such that a i∼A
k b, then (b, k) ∈ BA

1 (a) and (b, j) ∈
BA

2 (a) by definition. Assume now that (b, j) ∈ BA
2 (a). Hence there exists i ∈

{1, 2} such that dA((a, i), (b, j)) ≤ 2. We perform a case analysis on the value of
dA((a, i), (b, j)).

• Case dA((a, i), (b, j)) = 0. In that case a = b and i = j and we have a i∼A
i b.

• Case dA((a, i), (b, j)) = 1. In that case, ((a, i), (b, j)) is an edge in the data
graph G(A) of A which means that a i∼A

j b holds.
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• Case dA((a, i), (b, j)) = 2. Note that we have by definition a 6= b. Furthermore,
in that case, there is (c, k) ∈ A×{1, 2} such that ((a, i), (c, k)) and ((c, k), (b, j))

are edges in G(A). If c 6= a and c 6= b, this implies that a i∼A
k c and c k∼A

j b, so
a i∼A

j b and dA((a, i), (b, j)) = 1 which is a contradiction. If c = a and c 6= b, this
implies that ak∼A

j b. If c 6= a and c = b, this implies that a i∼A
k b.

We consider a formula ϕ = ∃x1 . . . ∃xn.ϕqf (x1, . . . , xn) of ∃-2-LFext
2 [Σ;A2] in prenex nor-

mal form, i.e., such that ϕqf (x1, . . . , xn) ∈ qf-2-LFext
2 [Σ;A2]. We know that there is a struc-

ture A = (A, (Pσ)σ∈Σ, f1, f2) in Str(Σ; 2DMS) such that A |= ϕ iff there are a1, . . . , an ∈ A
such that A |= ϕqf (a1, . . . , an).

Let A = (A, (Pσ)σ∈Σ, f1, f2) be a structure in Str(Σ; 2DMS) and ~a = (a1, . . . , an) a
tuple of elements in An. We shall present the construction of a 1-data-multiset [[A]]~a in
Str(Σ′; 1DMS) (with Σ ⊆ Σ′) with the same set of nodes as A, but where each node carries
a single data value. In order to retrieve the data relations that hold in A while reasoning
over [[A]]~a, we introduce extra-predicates in Σ′ to establish whether a node shares a common
value with one of the nodes among a1, . . . , an in A.

1
2a

1
3
b

3
2 c

5
6
d

4
3
e

2
7
f

(a) A data-multiset A and G(A).
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a

3
b

3
c

9
d

10
e
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f

Pa[1,1] = {a, b}
Pa[2,2] = {a, c}
Pa[1,2] = ∅
Pa[2,1] = {f}

(b) [[A]](a).

Figure 5.1

We now explain formally how we build [[A]]~a. Let Γn = {ap[i, j] | p ∈ {1, . . . , n}, i, j ∈
{1, 2}} be a set of new unary predicates and Σ′ = Σ ∪ Γn. For every element b ∈ A,
the predicates in Γn are used to keep track of the relation between the data values of b
and the one of a1, . . . , an in A. Formally, we define Pap[i,j] = {b ∈ A | A |= ap i∼j b}.
We now define a data function f : A → N. We recall for this matter that ValA(~a) =

{f1(a1), f2(a1), . . . , f1(an), f2(an)} and let fnew : A → N \ValA(A) be an injection. For
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every b ∈ A, we set:

f(b) =


f2(b) if f1(b) ∈ ValA(~a) and f2(b) /∈ ValA(~a)

f1(b) if f1(b) /∈ ValA(~a) and f2(b) ∈ ValA(~a)

fnew(b) otherwise

Hence depending if f1(b) or f2(b) is in ValA(~a), it splits the elements of A in four categories.
If f1(b) and f2(b) are in ValA(~a), the predicates in Γn allow us to retrieve all the data values
of b. Given j ∈ {1, 2}, if fj(b) is in ValA(~a) but f3−j(b) is not, the new predicates will give
us the j-th data value of b and we have to keep track of the (3− j)-th one, so we save it in
f(b). Lastly, if neither f1(b) nor f2(b) is in ValA(~a), we will never be able to see the data
values of b in ϕqf (thanks to Lemma 5.1.1), so they do not matter to us. Finally, we have
[[A]]~a = (A, (Pσ)σ∈Σ′ , f). Figure 5.1b provides an example of [[A]]~a for the data-multisets
depicted on Figure 5.1a and ~a = (a).

The next lemma formalizes the connection existing between A and [[A]]~a.

Lemma 5.1.2. Let b, c ∈ A and j, k ∈ {1, 2} and p ∈ {1, . . . , n}. The following statements
then hold.

1. If (b, j) ∈ BA
1 (ap) and (c, k) ∈ BA

1 (ap) then A|2,ext
ap |= b j∼k c iff there is i ∈ {1, 2} s.t.

b ∈ Pap[i,j] and c ∈ Pap[i,k].

2. If (b, j) ∈ BA
2 (ap) \ BA

1 (ap) and (c, k) ∈ BA
1 (ap) then A|2,ext

ap 2 b j∼k c

3. If (b, j), (c, k) ∈ BA
2 (ap) \ BA

1 (ap) then A|2,ext
ap |= b j∼k c iff either b 1∼

[[A]]~a
1 c or there

exists p′ ∈ {1, . . . , n} and ` ∈ {1, 2} such that b ∈ Pap′ [`,j] and c ∈ Pap′ [`,k] .

4. If (b, j) /∈ BA
2 (ap) and (c, k) ∈ BA

2 (ap) then A|2,ext
ap 2 b j∼k c

5. If (b, j) /∈ BA
2 (ap) and (c, k) /∈ BA

2 (ap) then A|2,ext
ap |= b j∼k c iff b = c and j = k.

Proof: We suppose that A|2,ext
ap = (A, (Pσ)σ, f

p
1 , f

p
2 ).

1. Assume that (b, j) ∈ BA
1 (ap) and (c, k) ∈ BA

1 (ap). It implies that fpj (b) = fj(b) and
fpk (c) = fk(c). Then assume that A|2,ext

ap |= b j∼k c. As (b, j) ∈ BA
1 (ap), thanks to

Lemma 5.1.1.1 it means that there is a i ∈ {1, 2} such that ap i∼A
j b. So we have

fk(c) = fpk (c) = fpj (b) = fj(b) = fi(ap), that is ap i∼A
k c. Hence by definition, b ∈

Pap[i,j] and c ∈ Pap[i,k]. Conversely, let i ∈ {1, 2} such that b ∈ Pap[i,j] and c ∈ Pap[i,k].
This means that ap i∼A

j b and ap i∼A
k c. So fpj (b) = fj(b) = fi(ap) = fk(c) = fpk (c),

that is A|2,ext
ap |= b j∼k c.

2. Assume that (b, j) ∈ BA
2 (ap) \ BA

1 (ap) and (c, k) ∈ BA
1 (ap). It implies that fpj (b) =

fj(b) and fpk (c) = fk(c). Thanks to Lemma 5.1.1.1, (c, k) ∈ BA
1 (ap) implies that

fk(c) ∈ {f1(ap), f2(ap)} and (b, j) /∈ BA
1 (ap) implies that fj(b) /∈ {f1(ap), f2(ap)}. So

A|2,ext
ap 6|= b j∼k c.
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3. Assume that (b, j), (c, k) ∈ BA
2 (ap) \ BA

1 (ap). As previously, we have that fj(b) /∈
{f1(ap), f2(ap)} and fk(c) /∈ {f1(ap), f2(ap)}, and thanks to Lemma 5.1.1.2, we have
f3−j(b) ∈ {f1(ap), f2(ap)} and f3−k(b) ∈ {f1(ap), f2(ap)}. There is then two cases:

• Suppose there does not exists p′ ∈ {1, . . . , n} such that fj(b) ∈ {f1(ap′), f2(ap′)}.
This allows us to deduce that fpj (b) = fj(b) = f(b) and fpk (c) = fk(c). If
A|2,ext
ap |= b j∼k c, then necessarily there does not exists p′ ∈ {1, . . . , n} such

that fk(c) ∈ {f1(ap′), f2(ap′)} so we have fpk (c) = fk(c) = f(c) and f(b) =

f(c), consequently b 1∼
[[A]]~a
1 c. Similarly assume that b 1∼

[[A]]~a
1 c, this means that

f(b) = f(c) and either b = c and k = j or b 6= c and by injectivity of f ,we have
fj(b) = f(b) = fk(c). This allows us to deduce that A|2,ext

ap |= b j∼k c.
• If there exists p′ ∈ {1, . . . , n} such that fj(b) = f`(ap′) for some ` ∈ {1, 2}. Then

we have b ∈ Pap′ [`,j]. Consequently, we have A|2,ext
ap |= b j∼k c iff c ∈ Pap′ [`,k].

4. We prove the case 4 and 5 at the same time. Assume that (b, j) /∈ BA
2 (ap). It means

that in order to have fpj (b) = fpk (c), we must have (b, j) = (c, k). So if (c, k) ∈ BA
2 (ap),

we can not have A|2,ext
ap |= b j∼k c which ends case 4. And if (c, k) /∈ BA

2 (ap), we have
that A|2,ext

ap |= b j∼k c iff b = c and j = k.

We see now how to translate the formula ϕqf (x1, . . . , xn) into a formula [[ϕqf ]](x1, . . . , xn)

in FO1DMS[Σ′; {∼}] such that A satisfies ϕqf (a1, . . . , an) iff, [[A]]~a satisfies [[ϕqf ]](a1, . . . , an).
Thanks to the previous lemma we know that if A|2,ext

ap |= b j∼k c then (b, j) and (c, k)

must belong to the same set among BA
1 (ap), BA

2 (ap) \ BA
1 (ap) and A \ BA

2 (ap) and we can
test in [[A]]~a whether (b, j) is a member of BA

1 (ap) or BA
2 (ap). Indeed, thanks to Lemmas

5.1.1.1 and 5.1.1.2, we have (b, j) ∈ BA
1 (ap) iff b ∈

⋃
i=1,2 Pap[i,j] and (b, j) ∈ BA

2 (ap) iff

b ∈
⋃j′=1,2
i=1,2 Pap[i,j′]. This reasoning leads to the following formulas in FO1DMS[Σ′; {∼}] with

p ∈ {1, . . . , n} and j ∈ {1, 2}:

• ϕj,B1(ap)(y) := ap[1, j](y) ∨ ap[2, j](y) to test if the j-th field of an element belongs
to BA

1 (ap)

• ϕB2(ap)(y) := ϕ1,B1(ap)(y) ∨ ϕ2,B1(ap)(y) to test if a field of an element belongs to
BA

2 (ap)

• ϕj,B2(ap)\B1(ap)(y) := ϕB2(ap)(y) ∧ ¬ϕj,B1(ap)(y) to test that the j-th field of an
element belongs to BA

2 (ap) \ BA
1 (ap)

We shall now present how we use these formulas to translate atomic formulas of the
form y j∼k z under some 〈〈−〉〉2,ext

xp
. For this matter, we rely on the three following formulas

of FO1DMS[Σ′; {∼}]:

• The first formula asks for (y, j) and (z, k) to be in B1
1 (ap) (where here we abuse

notations, using variables for the elements they represent) and for these two data
values to coincide with one data value of ap, it corresponds to Lemma 5.1.2.1:

ϕr=1
j,k,ap(y, z) := ϕj,B1(ap)(y) ∧ ϕk,B1(ap)(z) ∧

∨
i=1,2

(
ap[i, j](y) ∧ ap[i, k](z)

)
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• The second formula asks for (y, j) and (z, k) to be in BA
2 (ap) \ BA

1 (ap) and checks
either whether the data values of y and z in [[A]]~a are equal or whether there exist
p′ and ` such that y belongs to Pap′ [`,j] and z belongs to Pap′ [`,k], it corresponds to
Lemma 5.1.2.3:

ϕr=2
j,k,ap(y, z) := ϕj,B2(ap)\B1(ap)(y) ∧ ϕk,B2(ap)\B1(ap)(z)

∧

(
y ∼ z ∨

( n∨
p′=1

2∨
`=1

ap′ [`, j](y) ∧ ap′ [`, k](z)

))

• The third formula asks for (y, j) and (z, k) to not belong to BA
2 (ap) and for y = z, it

corresponds to Lemma 5.1.2.5:

ϕr>2
j,k,ap

(y, z) :=

¬ϕB2(ap)(y) ∧ ¬ϕB2(ap)(z) ∧ y = z if j = k

⊥ otherwise

Finally, here is the inductive definition of the translation [[−]] which uses sub transfor-
mations [[−]]xp in order to remember the centre of the ball and leads to the construction of
[[ϕqf ]](x1, . . . , xn):

[[ϕ ∨ ϕ′]] = [[ϕ]] ∨ [[ϕ′]]

[[xp = x′p]] = xp = x′p
[[¬ϕ]] = ¬[[ϕ]]

[[〈〈ψ〉〉2,ext
xp

]] = [[ψ]]xp

[[y j∼k z]]xp
= ϕr=1

j,k,ap
(y, z) ∨ ϕr=2

j,k,ap
(y, z) ∨ ϕr>2

j,k,ap
(y, z)

[[σ(x)]]xp
= σ(x)

[[x = y]]xp
= x = y

[[ϕ ∨ ϕ′]]xp = [[ϕ]]xp ∨ [[ϕ′]]xp

[[¬ϕ]]xp
= ¬[[ϕ]]xp

[[∃x.ϕ]]xp
= ∃x.[[ϕ]]xp

Lemma 5.1.3. We have A |= ϕqf (~a) iff [[A]]~a |= [[ϕqf ]](~a).

Proof: Because of the inductive definition of [[ϕ]] and that only the atomic formulas y j∼k z
change, we only have to prove that given b, c ∈ A, we have A|2,ext

ap |= b j∼k c iff [[A]]~a |=
[[y j∼k z]]xp

(b, c).
We first suppose that A|2,ext

ap |= b j∼k c. Using Lemma 5.1.2, it implies that (b, j) and
(c, k) belong to same set between BA

1 (ap), BA
2 (ap) \ BA

1 (ap) and A \ BA
2 (ap). We proceed

by a case analysis.

• If (b, j), (c, k) ∈ BA
1 (ap) then by lemma 5.1.2.1 we have that [[A]]~a |= ϕr=1

j,k,ap
(b, c) and

thus [[A]]~a |= [[y j∼k z]]xp(b, c).

• If (b, j), (c, k) ∈ BA
2 (ap) \ BA

1 (ap) then by lemma 5.1.2.3 we have that [[A]]~a |=
ϕr=2
j,k,ap

(b, c) and thus [[A]]~a |= [[y j∼k z]]xp
(b, c).
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• If (b, j), (c, k) ∈ A \ BA
2 (ap) then by lemma 5.1.2.5 we have that [[A]]~a |= ϕr>2

j,k,ap
(b, c)

and thus [[A]]~a |= [[y j∼k z]]xp
(b, c).

We now suppose that [[A]]~a |= [[y j∼k z]]xp
(b, c). It means that [[A]]~a satisfies at least

ϕr=1
j,k,ap

(b, c), ϕr=2
j,k,ap

(b, c) or ϕr>2
j,k,ap

(b, c). If [[A]]~a |= ϕr=1
j,k,ap

(b, c), it implies that (b, j) and
(c, k) are in BA

1 (ap), and we can then apply lemma 5.1.2.1 to deduce that A|2,ext
ap |= b j∼k c.

If [[A]]~a |= ϕr=2
j,k,ap

(b, c), it implies that (b, j) and (c, k) are in BA
2 (ap) \ BA

1 (ap), and we can
then apply Lemma 5.1.2.3 to deduce that A|2,ext

ap |= b j∼k c. If [[A]]~a |= ϕr>2
j,k,ap

(b, c), it
implies that (b, j) and (c, k) are in A \ BA

2 (ap), and we can then apply lemma 5.1.2.5 to
deduce that A|2,ext

ap |= b j∼k c.

To provide a reduction from 2DMS-Sat(∃-2-LFext;A2) to 1DMS-Sat(FO; {∼}), having
the formula [[ϕqf ]](x1, . . . , xn) is not enough because to use the result of the previous Lemma,
we need to ensure that there exists a model B and a tuple of elements (a1, . . . , an) such
that B |= [[ϕqf ]](a1, . . . , an) and as well that there exists A ∈ Str(Σ; 2DMS) such that
B = [[A]]~a. We explain now how we can ensure this last point.

Now, we want to characterize the structures of the form [[A]]~a. Given a structure B =

(A, (Pσ)σ∈Σ′ , f) ∈ Str(Σ′; 1DMS) and ~a ∈ A, we say that (B,~a) is well formed iff there
exists a structure A ∈ Str(Σ; 2DMS) such that B = [[A]]~a. Hence (B,~a) is well formed iff
there exist two functions f1, f2 : A→ N such that [[A]]~a = [[(A, (Pσ)σ∈Σ, f1, f2)]]~a. We state
three properties on (B,~a), and we will show that they characterize being well formed.

1. (Transitivity) For all b, c ∈ A, p, q ∈ {1, . . . , n}, i, j, k, ` ∈ {1, 2} if b ∈ Pap[i,j],
c ∈ Pap[i,`] and b ∈ Paq [k,j] then c ∈ Paq [k,`].

2. (Reflexivity) For all p and i, we have ap ∈ Pap[i,i],

3. (Uniqueness) For all b ∈ A, if b ∈
⋂
j=1,2

⋃i=1,2
p=1,...,n Pap[i,j] or b /∈

⋃
j=1,2

⋃i=1,2
p=1,...,n Pap[i,j]

then for any c ∈ B such that f(c) = f(b) we have c = b.

Each property can be expressed by a first order logic formula, which we respectively name
ϕtran , ϕrefl and ϕuniq and we denote by ϕwf their conjunction:

ϕtran = ∀y∀z.
n∧

p,q=1

2∧
i,j,k,`=1

(
ap[i, j](y) ∧ ap[i, `](z) ∧ aq[k, j](y)

→ aq[k, `](z)
)

ϕrefl(x1, . . . , xn) =

n∧
p=1

2∧
i=1

ap[i, i](xp)

ϕuniq = ∀y.
( 2∧
j=1

n∨
p=1

2∨
i=1

ap[i, j](y) ∨
2∧
j=1

n∧
p=1

2∧
i=1

¬ap[i, j](y)
)

→ (∀z.y ∼ z → y = z)

ϕwf (x1, . . . , xn) = ϕtran ∧ ϕrefl(x1, . . . , xn) ∧ ϕuniq
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The next lemma expresses that the formula ϕwf allows to characterise precisely the
1-data-multisets in Str(Σ′; 1DMS) which are well-formed.

Lemma 5.1.4. Let B ∈ Str(Σ′; 1DMS) and a1, . . . , an elements of B, then (B,~a) is well
formed iff B |= ϕwf (~a).

Proof: First, if (B,~a) is well formed, then there there exists A ∈ Str(Σ; 2DMS) such that
B = [[A]]~a and by construction we have [[A]]~a |= ϕwf (~a). We now suppose that B =

(A, (Pσ)σ∈Σ′ , f) and B |= ϕwf (~a). In order to define the functions f1, f2 : A→ N, we need
to introduce some objects.

We first define a function g : {1, . . . , n} × {1, 2} → N \Im(f) (where Im(f) is the image
of f in B) which verifies the following properly:

• for all p, q ∈ {1, . . . , n} and i, j ∈ {1, 2}, we have aq ∈ Pap[i,j] iff g(p, i) = g(q, j).

We use this function to fix the two data values carried by the elements in {a1, . . . , am}.
We now explain why the function g is well defined, it is due to the fact that B |=

ϕtran∧ϕrefl(a1, . . . , an). To prove it formally, let S be a binary relation on {1, . . . , n}×{1, 2}
defined by: (p, i)S(q, j) if aq ∈ Pap[i,j]. Then the function g is well defined iff S is an
equivalence relation (i.e. if S is reflexive, symmetric and transitive). First S is reflexive
iff for all (p, i), we have (p, i)S(p, i). It is the case thanks to ϕrefl which implies that
ap ∈ Pap[i,i]. Next we show that S is symmetric. So we assume that (p, i)S(q, j) and we
want to show that (q, j)S(p, i). With (p, i)S(q, j) we have that aq ∈ Pap[i,j] and thanks to
ϕrefl we have ap ∈ Pap[i,i] and aq ∈ Paq [j,j]. So thanks to ϕtran we have ap ∈ Paq [j,i] as
desired. Last we show that S is transitive, so we assume that (p, i)S(p′, i) and (p′, i′)S(p′′, i′′)

and we want to show that (p, i)S(p′′, i′′). With (p, i)S(p′, i) and (p′, i′)S(p′′, i′′) we have
a′p ∈ Pap[i,i′] and a′′p ∈ Pap′ [i′,i′′]. Then thanks to ϕrefl we have a′p ∈ Pap′ [i′,i′] and then
thanks to ϕtran we have a′′p ∈ Pap[i,i′′] as desired. We now are convinced that g is correctly
defined.

We also need a natural dout belonging to N \(Im(g) ∪ Im(f)). For j ∈ {1, 2}, we define
fj as follows for all b ∈ A:

fj(b) =


g(p, i) if for some p, i we have b ∈ Pap[i,j]

f(b) if for all p, i we have b /∈ Pap[i,j] and for some p, i we have b ∈ Pap[i,3−j]

dout if for all p, i, j′, we have b /∈ Pap[i,j′]

Here again, we can show that since B |= ϕtran ∧ ϕrefl(a1, . . . , an), the functions f1 and
f2 are well founded. Indeed, assume that b ∈ Pap[i,j]∩Paq [k,j], then we have necessarily that
g(p, i) = g(q, k). For this we need to show that ap ∈ aq[k, i] and we use again the formula
ϕtran . This can be obtained because we have b ∈ Pap[i,j] and ap ∈ Pap[i,i] and b ∈ Paq [k,j].

We then define A as the 2-data-structures (A, (Pσ)σ∈Σ, f1, f2). It remains to prove that
B = [[A]]~a.

First, note that for all b ∈ A, p ∈ {1, . . . , n} and i, j ∈ {1, 2}, we have b ∈ Pap[i,j] iff
ap i∼A

j b. Indeed, if we have b ∈ Pap[i,j], we have that fj(b) = g(p, i) and since ap ∈ Pap[i,i]

we have as well that fi(ap) = g(p, i), as a consequence ap i∼A
j b. In the other direction, if
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ap i∼A
j b, it means that fj(b) = fi(ap) = g(p, i) and thus b ∈ Pap[i,j]. Now to have B = [[A]]~a,

one has only to be careful in the choice of function fnew while building [[A]]~a. We recall
that this function is injective and is used to give a value to the elements b ∈ A such that
neither f1(b) ∈ ValA(~a) and f2(b) /∈ ValA(~a) nor f1(b) /∈ ValA(~a) and f2(b) ∈ ValA(~a). For
these elements, we make fnew matches with the function f and the fact that we define an
injection is guaranteed by the formula ϕuniq .

Using the results of Lemma 5.1.3 and 5.1.4, we deduce that the starting formula ϕ =

∃x1 . . . ∃xn.ϕqf (x1, . . . , xn) of ∃-2-LFext
2 [Σ;A2] is satisfiable if and only if the final formula

ψ = ∃x1 . . . ∃xn.[[ϕqf ]](x1, . . . , xn)∧ϕwf (x1, . . . , xn) is satisfiable. Note that ψ can be built in
polynomial time from ϕ and that it belongs to FO1DMS[Σ′; {∼}]. Hence, thanks to Theorem
2.3.25 which states that the problem 1DMS-Sat(FO; {∼}) is in N2Exp, we then obtain
that 2DMS-Sat(∃-2-LFext;A2) is in N2Exp.

We can as well obtain a matching lower bound thanks to a reduction from the prob-
lem 1DMS-Sat(FO; {∼}). The bottleneck of this reduction is that in the formulas of
∃-2-LFext

2 [Σ;A2], there is no restriction on the use of quantifiers for the formulas located un-
der the scope of the 〈〈·〉〉2,ext

x modality and that we can extend a model FO1DMS[Σ; {∼}] into a
2-data-multiset such that all elements and their values are located in the same radius-2-ball
by adding everywhere a second data value equal to 0. More formally, let ϕ be a formula
in FO1DMS[Σ; {∼}] and consider the formula ∃x.〈〈ϕ〉〉2,ext

x where we interpret ϕ over 2-data
structures (this formula simply never mentions the values located in the second fields). We
have then the following lemma.

Lemma 5.1.5. There exists A ∈ Str(Σ; 1DMS) such that A |= ϕ if and only if there exists
B ∈ Str(Σ; 2DMS) such that B |= ∃x.〈〈ϕ〉〉2,ext

x .

Proof: Assume that there exists A = (A, (Pσ)σ∈Σ, f1) in Str(Σ; 1DMS) such that A |= ϕ.
Consider the 2-data-multiset B = (A, (Pσ)σ∈Σ, f1, f2) such that f2(a) = 0 for all a ∈ A.
Let a ∈ A. It is clear that we have B|2,ext

a = B and that B|2,ext
a |= ϕ, because A |= ϕ and

ϕ never mentions the second values of the elements since it is a formula in FO1DMS[Σ; {∼}].
Consequently B |= ∃x.〈〈ϕ〉〉2,ext

x .
Assume now that there exists B = (A, (Pσ)σ∈Σ, f1, f2) in Str(Σ; 2DMS) such that B |=

∃x.〈〈ϕ〉〉2,ext
x . Hence there exists a ∈ A such that B|2,ext

a |= ϕ, but then by forgetting the
second value in B|2,ext

a we obtain a model in Str(Σ; 1DMS) which satisfies ϕ.

Since 1DMS-Sat(FO; {∼}) is N2Exp-hard (see Theorem 2.3.25), we obtain the desired
lower bound.
Theorem 5.1.6

The problem 2DMS-Sat(∃-2-LFext;A2) is N2Exp-complete.

5.1.2 Balls of radius 1 and any number of data values

Let κ ≥ 1. We first show that κDMS-Sat(∃-1-LFext;Aκ) is in NExp by providing a
reduction towards MS-Sat(FO; ∅). This reduction uses the characterisation of the radius-1-
ball provided by Lemma 5.1.1 and is very similar to the reduction provided in the previous
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section. In fact, for an element b located in the radius-1-ball of another element a, we use
extra unary predicates to explicit which are the values of b that are common with the values
of a. We provide here the main step of this reduction whose proof follows the same line as
the one of Theorem 5.1.6.

We consider a formula ϕ = ∃x1 . . . ∃xn.ϕqf (x1, . . . , xn) of ∃-1-LFext
κ [Σ;Aκ] in prenex nor-

mal form, i.e., such that ϕqf (x1, . . . , xn) ∈ qf-1-LFext
κ [Σ;Aκ]. We know that there is a struc-

ture A = (A, (Pσ)σ∈Σ, f1, f2, . . . , fκ) in Str(Σ;κDMS) such that A |= ϕ if and only if there
are a1, . . . , an ∈ A such that A |= ϕqf (a1, . . . , an). Let then A = (A, (Pσ)σ∈Σ, f1, f2, . . . , fκ)

in Str(Σ;κDMS) and a tuple ~a = (a1, . . . , an) of elements in An. Let Ωn = {ap[i, j] | p ∈
{1, . . . , n}, i, j ∈ {1, . . . , κ}} be a set of new unary predicates and Σ′ = Σ∪Ωn. For every ele-
ment b ∈ A, the predicates in Ωn are used to keep track of the relation between the data val-
ues of b and the one of a1, . . . , an in A. Formally, we have Pap[i,j] = {b ∈ A | A |= ap i∼j b}.
Finally, we build the 0-data-structure [[A]]′~a = (A, (Pσ)σ∈Σ′). Similarly to Lemma 5.1.2, we
have the following connection between A and [[A]]′~a.

Lemma 5.1.7. Let b, c ∈ A and j, k ∈ {1, . . . , κ} and p ∈ {1, . . . , n}. The following
statements hold:

1. If (b, j) ∈ BA
1 (ap) and (c, k) ∈ BA

1 (ap) then A|1,ext
ap |= b j∼k c iff there is i ∈ {1, 2} s.t.

b ∈ Pap[i,j] and c ∈ Pap[i,k].

2. If (b, j) /∈ BA
1 (ap) and (c, k) ∈ BA

1 (ap) then A|1,ext
ap 2 b j∼k c.

3. If (b, j) /∈ BA
1 (ap) and (c, k) /∈ BA

1 (ap) then A|1,ext
ap |= b j∼k c iff b = c and j = k.

We now see how we translate the formula ϕqf (x1, . . . , xn) into a formula [[ϕqf ]]′(x1, . . . , xn)

in FOMS[Σ′; ∅] such that A satisfies ϕqf (a1, . . . , an) iff [[A]]′~a satisfies [[ϕqf ]]′(a1, . . . , an). As in
the previous section, we introduce the following formula in FOMS[Σ′; ∅] with p ∈ {1, . . . , n}
and j ∈ {1, . . . , κ} to test if the j-th field of an element belongs to BA

1 (ap):

ϕj,B1(ap)(y) :=
∨

i∈{1,...,κ}

ap[i, j](y)

We now present how we translate atomic formulas of the form y j∼k z under some
〈〈−〉〉1,ext

xp
. For this matter, we rely on two formulas of FOMS[Σ′; ∅] which can be described

as follows:

• The first formula asks for (y, j) and (z, k) to be in BA
1 (ap) (here we abuse notations,

using variables for the elements they represent) and for these two data values to
coincide with one data value of ap, it corresponds to Lemma 5.1.7.1:

ψr=1
j,k,ap(y, z) := ϕj,B1(ap)(y) ∧ ϕk,B1(ap)(z) ∧

κ∨
i=1

(
ap[i, j](y) ∧ ap[i, k](z)

)

• The second formula asks for (y, j) and (z, k) to not belong to BA
1 (ap) and for y = z,
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it corresponds to Lemma 5.1.7.3:

ψr>1
j,k,ap

(y, z) :=


∧κ
i=1(¬ϕi,B1(ap)(y) ∧ ¬ϕi,B1(ap)(z)) ∧ y = z if j = k

⊥ otherwise

Finally, as before we provide an inductive definition of the translation [[−]]′ which uses
subtransformations [[−]]′xp

in order to remember the centre of the ball and leads to the
construction of [[ϕqf ]]′(x1, . . . , xn). We only detail the case

[[y j∼k z]]′xp
= ψr=1

j,k,ap(y, z) ∨ ψr>1
j,k,ap

(y, z)

as the other cases are identical as for the translation [[−]] shown in the previous section.
This leads to the following lemma (which is the pendant of Lemma 5.1.3).

Lemma 5.1.8. We have A |= ϕqf (~a) iff [[A]]′~a |= [[ϕqf ]]′(~a).

As we had to characterise the well-formed 1-data-multiset, a similar trick is necessary
here. For this matter, we use the following formulas:

ψtran = ∀y∀z.
n∧

p,q=1

κ∧
i,j,k,`=1

(
ap[i, j](y) ∧ ap[i, `](z) ∧ aq[k, j](y) → aq[k, `](z)

)
ψrefl(x1, . . . , xn) =

n∧
p=1

κ∧
i=1

ap[i, i](xp)

ψwf (x1, . . . , xn) = ψtran ∧ ψrefl(x1, . . . , xn)

Finally with the same reasoning as the one given in the previous section, we can show that
the formula ϕ = ∃x1 . . . ∃xn.ϕqf (x1, . . . , xn) of ∃-1-LFext

κ [Σ;Aκ] is satisfiable iff the formula
∃x1 . . . ∃xn.[[ϕqf ]]′(x1, . . . , xn) ∧ ψwf (x1, . . . , xn) is satisfiable. Note that this latter formula
can be built in polynomial time from ϕ and that it belongs to FOMS[Σ′; ∅]. Hence, thanks
to Theorem 2.3.9 which states that the problem MS-Sat(FO; ∅) is in NExp, we obtain that
κDMS-Sat(∃-1-LFext;Aκ) is in NExp. The matching lower bound is as well obtained the
same way by reducing MS-Sat(FO; ∅) to κDMS-Sat(∃-1-LFext;Aκ) showing that a formula
ϕ in FOMS[Σ; ∅] is satisfiable iff the formula ∃x.〈〈ϕ〉〉1,ext

x in ∃-1-LFext
κ [Σ;Aκ] is satisfiable.

Theorem 5.1.9

For all κ ≥ 1, the problem κDMS-Sat(∃-1-LFext;Aκ) is NExp-complete.

5.2 Undecidability results

We show here 2DMS-Sat(∃-3-LFext;A2) and 3DMS-Sat(∃-2-LFext;A3) are undecidable.
To obtain this we provide reductions from 2DMS-Sat(FO;A2) and we use the fact that any
2-data-multiset can be interpreted as a radius-3-ball of a 2-data-multiset or respectively as
a radius-2-ball of a 3-data-multiset.
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5.2.1 Radius 3 and two data values

In order to reduce 2DMS-Sat(FO;A2) to 2DMS-Sat(∃-3-LFext;A2), we show that we can
transform slightly any 2-data-multiset A into an other 2-data-multiset Age such that Age

corresponds to the radius-3-ball of any element of Age and this transformation has some
kind of inverse. Furthermore, given a formula ϕ ∈ FO2DMS[Σ;A2], we transform it into a
formula T (ϕ) in ∃-3-LFext

2 [Σ′;A2] such that A satisfies ϕ iff Age satisfies T (ϕ). What follows
is the formalisation of this reasoning.

Let A = (A, (Pσ)σ, f1, f2) be a 2-data structure in Str(Σ; 2DMS) and ge be a fresh unary
predicate not in Σ. From A we build the following 2-data-multiset Age = (A′, (P ′σ)σ, f

′
1, f
′
2) ∈

Str(Σ ∪ {ge}; 2DMS) such that:

• A′ = A ]
(
ValA(A)×ValA(A)

)
,

• for i ∈ {1, 2} and a ∈ A, f ′i(a) = fi(a) and for (d1, d2) ∈ ValA(A) × ValA(A),
fi((d1, d2)) = di,

• for σ ∈ Σ, P ′σ = Pσ,

• Pge = ValA(A)×ValA(A).

We have then the following property.

Lemma 5.2.1. Age|3,ext
a = Age for all a ∈ A′.

Proof: Let b ∈ A′ and i, j ∈ {1, 2}. We show that dAge((a, i), (b, j)) ≤ 3. i.e. that there is a
path of length at most 3 from (a, i) to (b, j) in the data graph G(Age). By construction of
Age, there is an element c ∈ A′ such that f1(c) = fi(a) and f2(c) = fj(b). So we have the
path (a, i), (c, 1), (c, 2), (b, j) of length at most 3 from (a, i) to (b, j) in G(Age).

Conversely, to A = (A, (Pσ)σ, f1, f2) ∈ Str(Σ ∪ {ge}; 2DMS), we associate A\ge =

(A′, (P ′σ)σ, f
′
1, f
′
2) ∈ Str(Σ; 2DMS) where:

• A′ = A \ Pge,

• for i ∈ {1, 2} and a ∈ A′, f ′i(a) = fi(a),

• for σ ∈ Σ, P ′σ = P ′σ \ Pge.

Finally we inductively translate any formula ϕ ∈ FO2DMS[Σ;A2] into T (ϕ) ∈ FO2DMS[Σ∪
{ge};A2] by making it quantify over elements not labeled with ge:

T (σ(x)) = σ(x),

T (x i∼j y) = x i∼j y,
T (x = y) = (x = y),

T (∃x.ϕ) = ∃x.¬ge(x) ∧ T (ϕ),

T (ϕ ∨ ϕ′) = T (ϕ) ∨ T (ϕ′),

T (¬ϕ) = ¬T (ϕ).
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Lemma 5.2.2. Let ϕ be a sentence in FO2DMS[Σ;A2], A ∈ Str(Σ; 2DMS) and B ∈ Str(Σ∪
{ge}; 2DMS). The two following properties hold:

• A |= ϕ iff Age |= T (ϕ)

• B\ge |= ϕ iff B |= T (ϕ).

Proof: As for any A ∈ Str(Σ; 2DMS) we have (Age)\ge = A, it is sufficient to prove the second
point. We reason by induction on ϕ. Let A = (A, (Pσ)σ, f1, f2) ∈ Str(Σ ∪ {ge}; 2DMS)

and let A\ge = (A′, (P ′σ)σ, f
′
1, f
′
2) ∈ Str(Σ; 2DMS). The inductive hypothesis is that for

any formula ϕ ∈ FO2DMS[Σ;A2] (closed or not) and any context interpretation function
I : V → A′ we have A\ge |=I ϕ iff A |=I T (ϕ). Note that the inductive hypothesis is well
founded in the sense that the interpretation I always maps variables to elements of the
structures.

We prove two cases: when ϕ is a unary predicate and when ϕ starts by an existential
quantification, the other cases being similar. First, assume that ϕ = σ(x) where σ ∈ Σ.
A\ge |=I σ(x) holds iff I(x) ∈ P ′σ. As I(x) ∈ A\Pge, we have I(x) ∈ P ′σ iff I(x) ∈ Pσ, which
is equivalent to A |=I T (σ(x)) . Second assume ϕ = ∃x.ϕ′. Suppose that A\ge |=I ∃x.ϕ′.
Thus, there is a a ∈ A′ such that A\ge |=I[x/a] ϕ

′. By inductive hypothesis, we have
A |=I[x/a] T (ϕ′). As a ∈ A′ = A\Pge, we have A |=I[x/a] ¬ge(x), so A |=I ∃x.¬ge(x)∧ T (ϕ′)

as desired. Conversely, supposse that A |=I T (∃x.ϕ′). It means that there is a a ∈ A such
that A |=I[x/a] ¬ge(x) ∧ T (ϕ′). So we have that a ∈ A′ = A \Pge, which means that I[x/a]

takes values in A and we can apply the inductive hypothesis to get that A\ge |=I[x/a] ϕ
′. So

we have A\ge |=I ∃x.ϕ′.

From Theorem 2.3.27, we know that 2DMS-Sat(FO;A2) is undecidable. From a closed
formula ϕ ∈ FO2DMS[Σ;A2], we build the formula ∃x.〈〈T (ϕ)〉〉3,ext

x ∈ ∃-3-LFext
2 [Σ∪{ge};A2].

Now if ϕ is satisfiable, it means that there exists A ∈ Str(Σ; 2DMS) such that A |= ϕ.
By Lemma 5.2.2, Age |= T (ϕ). Let a be an element of A, then thanks to Lemma 5.2.1,
we have Age|3,ext

a |= T (ϕ). Finally by definition of our logic, Age |= ∃x.〈〈T (ϕ)〉〉3,ext
x . So

∃x.〈〈T (ϕ〉〉3,ext
x is satisfiable. Now assume that ∃x.〈〈T (ϕ)〉〉3,ext

x is satisfiable. So there exist
A ∈ Str(Σ ∪ {ge}; 2DMS) and an element a of A such that A|3,ext

a |= T (ϕ). Using Lemma
5.2.2, we obtain (A|3,ext

a )\ge |= ϕ. Hence ϕ is satisfiable. This shows that we can reduce
2DMS-Sat(FO;A2) to 2DMS-Sat(∃-3-LFext;A2) .

Theorem 5.2.3

The problem 2DMS-Sat(∃-3-LFext;A2) is undecidable.

5.2.2 Radius 2 and three data values

We provide here a reduction from 2DMS-Sat(FO;A2) to 3DMS-Sat(∃-2-LFext;A3). The
idea is similar to the one used in the proof of Lemma 5.1.5 to show that the problem
2DMS-Sat(∃-2-LFext;A2) is N2EXP-hard by reducing 1DMS-Sat(FO; {∼}). Indeed we
have the following Lemma.
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Lemma 5.2.4. Let ϕ be a formula in FO2DMS[Σ;A2]. There exists A ∈ Str(Σ; 2DMS) such
that A |= ϕ if and only if there exists B ∈ Str(Σ; 3DMS) such that B |= ∃x.〈〈ϕ〉〉2,ext

x .

Proof: Assume that there exists A = (A, (Pσ)σ∈Σ, f1, f2) in Str(Σ; 2DMS) such that A |= ϕ.
Consider the 3-data-multiset B = (A, (Pσ)σ∈Σ, f1, f2, f3) such that f3(a) = 0 for all a ∈ A.
Let a ∈ A. It is clear that we have B|2,ext

a = B and that B|2,ext
a |= ϕ (because A |= ϕ and

ϕ never mentions the third values of the elements since it is a formula in FO2DMS[Σ;A2]).
Consequently B |= ∃x.〈〈ϕ〉〉2,ext

x .
Assume now that there exists B = (A, (Pσ)σ∈Σ, f1, f2, f3) in Str(Σ; 3DMS) such that

B |= ∃x.〈〈ϕ〉〉2,ext
x . Hence there exists a ∈ A such that B|2,ext

a |= ϕ, but then by forgetting
the thir value in B|2,ext

a we obtain a model in Str(Σ; 3DMS) which satisfies ϕ.

Using Theorem 2.3.27, we obtain the following result.
Theorem 5.2.5

The problem 3DMS-Sat(∃-2-LFext;A3) is undecidable.



Conclusion

In this work, we have tried to pursue an exhaustive study in order to determine when the
satisfiability for data logics and other related logics is decidable. We started by giving an
overview of the already existing results. Then we focus solely on the local first order logic
with data. The results we have obtained for the local fragments are sum up in Table 5.1.
We observe that even if we consider the existential fragment, as soon as the view of the
elements has a radius bigger than 3, the satisfiability problem is undecidable. This table
allows us as well to see what are the missing elements in order to fully characterise the
decidability status of this satisfiability problem. In particular, we do not know whether the
decidability result of Theorem 4.2.19 still holds when considering two diagonal relations,
but our proof technique does not seem to directly apply. It would be as well very interesting
to establish the relative expressive power of these logics and to compare them with some
other well-known fragments as for instance the guarded fragment. Finally, another research
direction would be to see how our logic could be used to verify distributed algorithms with
data (each element in our model representing a process).

Logic r κ R Decidability status
− 0 ∅ NExp-complete (Thm 2.3.9[12, 19])

FOκDMS[Σ;R] − 1 {1∼1} N2EXP-complete (Thm 2.3.25[40, 20])
− 2 {1∼1, 2∼2} Undecidable (Thm 2.3.27[29])
1 2 {1∼1, 2∼2, 1∼2} Decidable (Thm 4.2.19)

r-LFint
κ [Σ;R]

1 2 {1∼1, 2∼2, 2∼1} Decidable (Thm 4.2.19)
2 2 {1∼1, 2∼2, 1∼2} Undecidable (Thm 4.3.9)
3 2 {1∼1, 2∼2} Undecidable (Thm 4.3.5)
1 ≥ 1 {1∼1} NEXP-complete (Thm 5.1.9)

∃-r-LFext
κ [Σ;R]

2 2 {1∼1, 2∼2, 1∼2, 2∼1} N2EXP-complete (Thm5.1.6)
3 2 {1∼1, 2∼2, 1∼2, 2∼1} Undecidable (Thm 5.2.3)
2 3 A3 Undecidable (Thm 5.2.5)

Table 5.1: Summary of the results for the satisfiability problem
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